Development of Banana/Coir Natural Fibers Reinforced Polypropylene Hybrid Composites: The Effect of MA-g-PP (Maleic Anhydride Grafted Polypropylene) on Mechanical Properties and Thermal Properties

Article Preview

Abstract:

Banana/Coir fiber reinforced polypropylene hybrid composites was formulated by using twin screw extruder and injection molding machine. Specimens were prepared untreated and treated B/C Hybrid composites with 4% and 8% of MA-g-PP to increase its compatibility with the polypropylene matrix. Both the without MA-g-PP and with MA-g-PP B/C hybrid composites was utilized and three levels of B/C fiber loadings 15/5, 10/10 and 5/15 % were used during manufacturing of B/C reinforced polypropylene hybrid composites. In this work mechanical performance (tensile, flexural and impact strengths) of untreated and treated (coupling agent) with 4% and 8% of MA-g-PP B/C fibers reinforced polypropylene hybrid composite have been investigated. Treated with MA-g-PP B/C fibers reinforced specimens explored better mechanical properties compared to untreated B/C fibers reinforced polypropylene hybrid composites. Mechanical tests represents that tensile, flexural and impact strength increases with increase in concentration of coupling agent compared to without coupling agent MA-g-PP hybrid composites . B/C fibers reinforced polymer composites exhibited higher tensile, flexural and impact strength at 5% of Banana fiber, 15% of fiber Coir in the presence of 8% of MA-g-PP compared to 4% of MA-g-PP and untreated hybrid composites. The percentage of water absorption in the B/C fibers reinforced polypropylene hybrid composites resisted due to the presence of coupling agent MA-g-PP and thermogravimetry analysis (TGA) also has done.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Ismat Zerin Luna,Krishna Chandra Dam, A. M. Sarwaruddin Chowdhury, Md. Abdul Gafur,Nuruzzaman Khan, Ruhul A. Khan (2015) Physical and thermal characterization of alkali treated rice husk reinforced composites. Adv in Mat Sci & Eng 2015: 7.

DOI: 10.1155/2015/907327

Google Scholar

[2] Ankita Nandi, Amey Kale, N. Raghu,Pankaj Kumar Aggarwal, Shakti Singh Chauhan (2013) Effect of concentration of coupling agent on mechanical properties of coir–polypropylene composite. J Indian Acad Wood Sci 10: 62-67. DOI 10.1007/s13196-013-0094-7.

DOI: 10.1007/s13196-013-0094-7

Google Scholar

[3] Sanjay K. Nayak and Smita Mohanty (2009) Sisal glass fiber reinforced pp hybrid composites: Effect of MAPP on the dynamic mechanical and thermal properties. J Reinf Plast compo 29:1551-1568. https://doi.org/10.1177/0731684409337632.

DOI: 10.1177/0731684409337632

Google Scholar

[4] N.H. Tran, S.Ogihara, S.Kobayashi (2011) Mechanical properties of short coir/PBS biodegradable composites: Effect of alkali treatment and fiber content. 18th International Conference on Composites Materials, ICCM (2011).

DOI: 10.1016/j.compositesb.2011.04.001

Google Scholar

[5] Okikiola GaniuAGBABIAKA; Isiaka Oluwole OLADELE; Paul Toluwalagbara OLORUNLEYE (2014) Investigating the influence of alkalization on the mechanical and water absorption properties of coconut and sponge fibers reinforced polypropylene composites. L Elec J Prac Tech 13:223-231.

Google Scholar

[6] Maria Virginia Gelfuso; Pedro Vieira Gurgel da Silva; Daniel Thomazin (2011) Polypropylene matrix composites reinforced with coconut fibers Mat. Res. 14: 360-365.

DOI: 10.1590/s1516-14392011005000056

Google Scholar

[7] HamidEssabir,RadouaneBoujmal, Mohammed Ouadi Bensalah, Denis Rodrigue,Rachid Bouhfid, Abou el kacemQaiss (2016). Mechanical and thermal properties of hybrid composites: Oil-palm fiber/clay reinforced high density polyethylene. Mech. Mat. 98: 36-43. https://doi.org/10.1016/j.mechmat.2016.04.008.

DOI: 10.1016/j.mechmat.2016.04.008

Google Scholar

[8] Md. NazrulIslam,Md. Rezaur Rahman,Md. Mominul Haque,Md. Monimul Huque (2010) Physico-mechanical properties of chemically treated coir reinforced polypropylene composites. Comp Part A, 41:192-198. https://doi.org/10.1016/j.compositesa.2009.10.006.

DOI: 10.1016/j.compositesa.2009.10.006

Google Scholar

[9] L.A. Pothan, B. M. Charian, B. Anandakutty, Sabu Thomas (2007) Effecet of layering pattern on the water absorption behavior of banana glass hybrid composites. J Appl Polym Sci 105:2540-2548. https://doi.org/10.1002/app.25663.

DOI: 10.1002/app.25663

Google Scholar

[10] Putinun uawongsuwan, yuquiu yang, Hiroyuki Hamada (2014) Long jute fiber – reinforced polypropylene composite: Effects of jute fiber bundle and glass fiber hybridization. J Appl polym Sci 132:41819-41832.

DOI: 10.1002/app.41819

Google Scholar

[11] Sanjay K. Chattopadhyay, R. K. Khandal, Ramagopal Uppaluri, Aloke K. Ghoshal (2010) Bamboo Fiber Reinforced Polypropylene Composites and Their Mechanical, Thermal, and Morphological Properties. J Appl Polym Sci 119:1619–1626.

DOI: 10.1002/app.32826

Google Scholar

[12] K. Rukmini, B. Ramaraj, Siddaramaiah (2013) Development of Eco-Friendly Cotton Fabric Reinforced Polypropylene Composites: Mechanical, Thermal, and Morphological Properties. Adv Polym Techn 32:21327.

DOI: 10.1002/adv.21327

Google Scholar

[13] Ankita Nandi, Amey Kale, N. Raghu, Pankaj Kumar Aggarwal, Shakti Singh Chauhan (2013) Effect of concentration of coupling agent on mechanical properties of coir–polypropylene composite. J Ind Acad Wood Sci 10:62-67.

DOI: 10.1007/s13196-013-0094-7

Google Scholar

[14] B. Ramaraj (2006) Mechanical and Thermal Properties of Polypropylene/Sugarcane Bagasse Composites. J Appl Polym Sci 103:3827-3832.

DOI: 10.1002/app.25333

Google Scholar

[15] Srabayeeta Basu Roy, B. Ramaraj, S. C. Shit, Sanjay K. Nayak (2011) Polypropylene and Potato Starch Biocomposites: Physicomechanical and Thermal Properties. J Appl Polym Sci 120:3078-3086.

DOI: 10.1002/app.33486

Google Scholar

[16] Md Mominul Haque, Md. Nazrul Islam, Mahbub Hasan (2010) Coir fiber reinforced polypropylene composites: physical and mechanical properties. J Adv Comp Mat 19:91-106.

DOI: 10.1163/092430409x12530067339325

Google Scholar

[17] Salma Siddika, Fayeka Mansura, and Mahbub Hasan (2013) Physico-Mechanical Properties of Jute-Coir Fiber Reinforced Hybrid Polypropylene Composites. I J Mat Metr Eng 7:511.

DOI: 10.1007/s12221-014-1023-0

Google Scholar

[18] Sushanta K. Samal, Smita Mohanty and Sanjay K. Nayak. (2009) Polypropylene–Bamboo/Glass Fiber Hybrid Composites: Fabrication and Analysis of Mechanical, Morphological, Thermal, and Dynamic Mechanical Behavior. J Reinf Plas Comp. 28:2729 – 2747.

DOI: 10.1177/0731684408093451

Google Scholar

[19] Haijun Li and Mohini M. Sain (2003) High Stiffness Natural Fiber-Reinforced Hybrid Polypropylene Composites. J poly plas Tech Eng. 42: 853-862.

DOI: 10.1081/ppt-120024999

Google Scholar

[20] Umit HUNER (2017) Comparisons of Polypropylene Composites: The Effect of Coupling Agent on Mechanical Properties. J Sci Tech 7:28-40.

Google Scholar

[21] K. Z. M. Abdul Motaleb , Md Shariful Islam, and Mohammad B. Hoque (2018) Improvement of Physicomechanical Properties of Pineapple Leaf Fiber Reinforced Composite. I J Biomat 2018:7384360.

DOI: 10.1155/2018/7384360

Google Scholar

[22] Nadir Ayrilmis, Songklod Jarusombuti, Vallayuth Fueangvivat, Piyawade Bauchongkol, and Robert H. White (2011) Coir Fiber Reinforced Polypropylene Composite Panel for Automotive Interior Applications. Fib Polym 12:919-926.

DOI: 10.1007/s12221-011-0919-1

Google Scholar