Poly(N-Isopropylacrylamide) Microgel Synthesised by Emulsion Polymerization

Article Preview

Abstract:

Smart polymers have been one of the most popularly studied materials owing to their capability to alter physio-chemical behaviour upon exposure to specific external stimuli. The biocompatible thermally responsive poly (N-isopropylacrylamide), PNIPAm shows reversible transition between hydrophilic-hydrophobic characteristics at the vicinity of human physiological temperature has great potential to propel the development of smart tissue engineering scaffold and drug delivery. However, the limited availability and its high cost have dampened the extent of research on this polymer. To address these challenges, the current work demonstrates an economical lab-scale polymerization of crosslinked PNIPAm and the optimised parameters to produce mono-dispersed polymer hydrogel particles were investigated. Characterisation of the synthesized PNIPAm polymer revealed particle size polydispersity index of 0.215, indicative of distribution within the mono-dispersed range, with average hydrodynamic diameter of 346.3 nm. Zeta-potential of the synthesized PNIPAm was found to be -20.6 mV, suggesting an incipient instability in terms of colloidal coagulation. Viscosity of the synthesized PNIPAm (4 wt% concentration in methanol) was 28.6 cP. Thermal gravimetric analysis (TGA) indicated the thermal degradation of main chain PNIPAm fell in the range of 340 to 480°C.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 307)

Pages:

345-350

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Wei et al., Facile synthesis of thermo-responsive nanogels less than 50 nm in diameter via soap- and heat-free precipitation polymerization, J. Mater. Sci. 53(17) (2018) 12056-12064.

DOI: 10.1007/s10853-018-2495-x

Google Scholar

[2] J. Khan, M. Siddiq, B. Akram, M. A. Ashraf, In-situ synthesis of CuO nanoparticles in P(NIPAM-co-AAA) microgel, structural characterization, catalytic and biological applications, Arab. J. Chem. 11(6) (2018) 897-909.

DOI: 10.1016/j.arabjc.2017.12.018

Google Scholar

[3] R. Contreras-Ca, L. Schellkopf, C. Ferna, I. Pastoriza-Santos, J. Pe, M. Stamm, Effect of the cross-linking density on the thermoresponsive behavior of hollow PNIPAM microgels, Langmuir 31(3) (2015) 1142-1149.

DOI: 10.1021/la504176a

Google Scholar

[4] A. K. Tucker, M. J. Stevens, Study of the polymer length dependence of the single chain transition temperature in syndiotactic Poly(N -isopropylacrylamide) oligomers in water, Macromolecules 45(16) (2012) 6697–6703.

DOI: 10.1021/ma300729z

Google Scholar

[5] X. Lang, A.D. Patrick, B. Hammouda, M.J.A. Hore, Chain terminal group leads to distinct thermoresponsive behaviors of linear PNIPAM and polymer analogs, Polymer 145 (2018) 137-147.

DOI: 10.1016/j.polymer.2018.04.068

Google Scholar

[6] A. Pica, G. Graziano, Hydrostatic pressure effect on PNIPAM cononsolvency in water-methanol solutions, Biophys. Chem. 231 (2017) 34–38.

DOI: 10.1016/j.bpc.2017.01.001

Google Scholar

[7] M. Yang, K. Zhao, Cononsolvency of poly( N -isopropylacrylamide) in methanol aqueous solution-insight by dielectric spectroscopy, J. Polym. Sci. Part B Polym. Phys. 55(16) (2017) 1227–1234.

DOI: 10.1002/polb.24377

Google Scholar

[8] K. Jain, R. Vedarajan, M. Watanabe, M. Ishikiriyama, N. Matsumi, Tunable LCST behavior of poly(N-isopropylacrylamide/ionic liquid) copolymers, J. Polym. Chem. 38(6) (2015) 6819-6825.

DOI: 10.1039/c5py00998g

Google Scholar

[9] M. Kwok, T. Ngai, Emulsions stabilized by pH-responsive PNIPAM-based microgels: Effect of spatial distribution of functional carboxylic groups on the emulsion stability, J. Taiwan Inst. Chem. Eng. 92 (2018) 97-105.

DOI: 10.1016/j.jtice.2018.01.041

Google Scholar

[10] A. Sood, Particle size distribution control in emulsion polymerization, J. of Appli. Polym. Sci. 92(5) (2004) 2884-2902.

DOI: 10.1002/app.20231

Google Scholar

[11] L. C. Kröger, W. A. Kopp, K. Leonhard, Prediction of chain propagation rate constants of polymerization reactions in aqueous NIPAM/BIS and VCL/BIS systems, J. Phys. Chem. B 121(13) (2017) 2887-2895.

DOI: 10.1021/acs.jpcb.6b09147

Google Scholar

[12] B. Sun, Y. Lin, P. Wu, Structure analysis of Poly(N-isopropylacrylamide) using near- infrared spectroscopy and generalized two-dimensional correlation infrared spectroscopy, J. Appli. Spectr. 61(7) (2007) 765-771.

DOI: 10.1366/000370207781393271

Google Scholar

[13] D. A. Beattie, J. Addai-Mensah, A. Beaussart, G. V. Franks, K.-Y. Yeap, In situ particle film ATR FTIR spectroscopy of poly (N-isopropyl acrylamide) (PNIPAM) adsorption onto talc, Phys. Chem. Chem. Phys. 16(45) (2014) 25143-25151.

DOI: 10.1039/c4cp03161j

Google Scholar

[14] Y. V. Pan, R. A. Wesley, R. Luginbuhl, D. D. Denton, B. D. Ratner, Plasma polymerized N-Isopropylacrylamide: Synthesis and characterization of a smart thermally responsive coating, J. Biomacromolecules 2(1) (2001) 32-36.

DOI: 10.1021/bm0000642

Google Scholar

[15] M. Kurečič, M. Sfiligoj-Smole, K. Stana-Kleinschek, UV polymerization of poly (N-isopropylacrylamide) hydrogel, J. Mater. Tehnol. 46 (2012) 87–91.

Google Scholar

[16] C. S. Chern, Emulsion polymerization mechanisms and kinetics, J. Prog. Polym. Sci., 31(5) (2006) 443-486.

Google Scholar

[17] T. M. Riddick, Control of Colloid Stability through Zeta Potential: With a Closing Chapter on its Relationship to Cardiovascular Disease, Livingston, Pennsylvania, (1968).

Google Scholar

[18] G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, (2002).

Google Scholar

[19] E. H. N. Yong, K. Y. Tshai, I. C. C. Lim, S. S. Lim, Y. A. Nor, Y. Z. H. Y. Hashim, Electrospun linear uncrosslinked and crosslinked poly(N-isopropylacrylamide) hydrogel scaffolds, National Electrospinning Conference, Kuala Lumpur, (2018).

Google Scholar

[20] C. A. Ribeiro, M. V. S. Martins, A. H. Bressiani, J. C. Bressiani, M. E. Leyva, A. A. A. de Queiroz, Electrochemical preparation and characterization of PNIPAM-HAp scaffolds for bone tissue engineering, J. Mater. Sci. Eng. C 81 (2017) 156–166.

DOI: 10.1016/j.msec.2017.07.048

Google Scholar

[21] L. Ruiz-Rubio, V. Álvarez, E. Lizundia, J. L. Vilas, M. Rodríguez, and L. M. León, Influence of α-methyl substitutions on interpolymer complexes formation between poly(meth)acrylic acids and poly(N-isopropyl(meth)acrylamide)s, J. Colloid and Polym. Sci. 293(5) (2015) 1447–1455.

DOI: 10.1007/s00396-015-3529-4

Google Scholar