Luminescence Properties of Magnesium Sodium Borate Glasses Doped Sm3+, Dy3+ and Eu3+

Article Preview

Abstract:

The luminescence properties Dy3+, Eu3+ and Sm3+ doped magnesium sodium borate glasses were investigated. The glasses samples containing the composition 30MgO-70Na2B4O7.10H2O-xRE2O3 (where RE = Dy3+, Eu3+, and Sm3+, x = 0.1, 0.5, and 1.0 mol %) are prepared by the conventional melt quenching technique. The optical properties have been evaluated using Ultraviolet-Visible Spectroscopy and Photoluminescence Spectroscopy. The X-ray Diffraction pattern was studied to confirm the amorphous nature of the prepared glass. The absorption spectra yield the most intense absorption bands and transition energy levels for Dy3+, Eu3+, and Sm3+ located at 347 nm (6H15/26P7/2), 393 nm (7F05L6), and 403 nm (6H5/2 6P5/2) respectively. The emission spectra demonstrate the highest emission intensity centered at 463 nm (4F9/26F11/2 + 6H9/2), 612 nm (5D07FJ), and 599 nm (4G5/26H7/2) for Dy3+, Eu3+, and Sm3+ respectively. Dy3+ emits combination of blue, yellow, and red light, Eu3+ emits red light and Sm3+ emits orange to red light. The higher the content of Dy3+, Eu3+, and Sm3+, the higher the spectral or peak intensity for both absorption and emission. The findings could be useful for development of laser, light emitting diode (LED), and color displays applications. KEY WORDS: Luminescence, Borax glass, Magnesium, Dysprosium, Europium, Samarium.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 307)

Pages:

314-320

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Callister Jr, W. D. (2007). Materials Science and Engineering, 7th Edition, John Wiley & Sons Inc., USA.

Google Scholar

[2] Dahaltu, S. A., Hussin, R., & Deraman, K. (2016). Structural Characterization of Sulfoborate Glasses Containing Magnesium Oxide. Jurnal Teknologi, 78(6-11), 73-76.

DOI: 10.11113/jt.v78.9200

Google Scholar

[3] Kamitsos, E. I., Karakassides, M. A., & Chryssikos, G. D. (1986). Far-infrared spectra of magnesium-sodium-borate glasses. Solid State Communications, 60(11), 885-888. doi:https://doi.org/10.1016/0038-1098(86)90829-X.

DOI: 10.1016/0038-1098(86)90829-x

Google Scholar

[4] S. Sen, Temperature Induced Structural Changes and Transport Mechanisms in Borate, Borosilicate and Boroaluminate Liquids: High-Resolution and High-Temperature NMR Results,, J. Non-Cryst. Solids, 253 [1] 84–94 (1999).

DOI: 10.1016/s0022-3093(99)00346-4

Google Scholar

[5] J. Wu, M. Potuzak, and J. F. Stebbins, High-Temperature in Situ NMR Study of Network Dynamics in Boron-Containing Glass-Forming Liquids,, J. Non-Cryst. Solids, 357 [24] 3944–3951 (2011).

DOI: 10.1016/j.jnoncrysol.2011.08.013

Google Scholar

[6] M. N. Svenson, et al., Composition-Structure-Property Relations of Compressed Borosilicate Glasses,, Phys. Rev. Appl., 2 [2] 24006 (2014).

Google Scholar

[7] Siva Priya Jaccani and Liping Huang, (2016), Understanding Sodium Borate Glasses and Melts from Their Elastic Response to Temperature, International Journal of Applied Glass Science, 7 [4] 452–463.

DOI: 10.1111/ijag.12250

Google Scholar

[8] J. Singh1, D. Singh, S.P. Singh, G.S. Mudahar, K.S. Thind, OPTICAL CHARACTERIZATION OF SODIUM BORATE GLASSES WITH DIFFERENT GLASS MODIFIERS, Materials Physics and Mechanics 19 (2014) 9-15.

Google Scholar

[9] Dawaud, R. S. E. S., Hashim, S., Alajerami, Y. S. M., Mhareb, M. H. A., & Tamchek, N. (2014). Optical and structural properties of lithium sodium borate glasses doped Dy3+ ions. Journal of Molecular Structure, 1075, 113-117. doi:https://doi.org/10.1016/j.molstruc.2014.06.032.

DOI: 10.1016/j.molstruc.2014.06.032

Google Scholar

[10] Hegde, V., Viswanath, C. S. D., Upadhyaya, V., Mahato, K. K., & Kamath, S. D. (2017). Red light emission from europium doped zinc sodium bismuth borate glasses. Physica B: Condensed Matter, 527, 35-43. doi:https://doi.org/10.1016/j.physb.2017.09.113.

DOI: 10.1016/j.physb.2017.09.113

Google Scholar

[11] Seshadri, M., Radha, M., Rajesh, D., Barbosa, L. C., Cordeiro, C. M. B., & Ratnakaram, Y. C. (2015). Effect of ZnO on spectroscopic properties of Sm3+ doped zinc phosphate glasses. Physica B: Condensed Matter, 459, 79-87. doi:https://doi.org/10.1016/j.physb.2014.11.016.

DOI: 10.1016/j.physb.2014.11.016

Google Scholar

[12] Pawar, P. P., Munishwar, S. R., & Gedam, R. S. (2016). Physical and optical properties of Dy3+/Pr3+ Co-doped lithium borate glasses for W-LED. Journal of Alloys and Compounds, 660, 347-355. doi:https://doi.org/10.1016/j.jallcom.2015.11.087.

DOI: 10.1016/j.jallcom.2015.11.087

Google Scholar

[13] Wong, P. S., Wan, M. H., Hussin, R., Lintang, H. O., & S., E. (2014). Structural and luminescence studies of europium ions in lithium aluminium borophosphate glasses Journal of Rare Earths, 32(7), 585.

DOI: 10.1016/s1002-0721(14)60112-5

Google Scholar

[14] Mohan, S., Kaur, S., Singh, D. P., & Kaur, P. (2017). Structural and luminescence properties of samarium doped lead alumino borate glasses. Optical Materials, 73, 223-233. doi:https://doi.org/10.1016/j.optmat.2017.08.015.

DOI: 10.1016/j.optmat.2017.08.015

Google Scholar