[1]
Information on https://arpa-e.energy.gov/?q=slick-sheet-project/solar-thermoelectric-generator. Advanced Research Projects Agency. 2012. Solar Thermoelectric Generator.
Google Scholar
[2]
W.H. Chen, P.H. Wu, X.D. Wang, Y.L. Lin, Power output and efficiency of a thermoelectric generator under temperature control, Energy Conversion and Management 127 (2016) 404-415.
DOI: 10.1016/j.enconman.2016.09.039
Google Scholar
[3]
G.Q. Qi, C.L. Liang, R.Y. Bao, Z.Y. Liu, W. Yang, B.H. Xie, Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide, Solar Energy Material & Solar Cells 123 (2014) 171-177.
DOI: 10.1016/j.solmat.2014.01.024
Google Scholar
[4]
M. Amin, N. Putra, E.A. Kosasih, E. Prawiro, R.A. Luanto, T.M.I. Mahlia, Thermal properties of beeswax/graphene phase change material as energy storage for building applications, Applied Thermal Engineering 112 (2016) 273-280.
DOI: 10.1016/j.applthermaleng.2016.10.085
Google Scholar
[5]
A.R. Akhiani, M. Mehrali, S.T. Latibari, M. Mehrali, T.M. Indra Mahlia, E. Sadeghinezhad, H.S. Cornelis Metselaar, One-step preparation of form-stable phase change through self-assembly of fatty acid and graphene, J. Phys. Chem. C. 119(40) (2015) 22787-22796.
DOI: 10.1021/acs.jpcc.5b06089
Google Scholar
[6]
Sekar, S; Putra, N; Amin, M; and Afriyanti, The utilization of paraffin and beeswax as heat energy storage in infant incubator, Journal of Engineering and Applied Sciences 11(2) (2016) 800-804.
Google Scholar
[7]
J.H. Ming, X.D. Wang, W.H. Chen, Performance investigation and design optimization of a thermoelectric generator applied in automobile exhaust waste heat recovery, Energy Conversion and Management 120 (2016) 71-80.
DOI: 10.1016/j.enconman.2016.04.080
Google Scholar
[8]
L. Zhang, G. Chen, M.N. Hedhili, H. Zhang, P. Wang, Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced self-assembly method, Nanoscale 4 (2012) 7038-7045.
DOI: 10.1039/c2nr32157b
Google Scholar
[9]
T. Kousksou, P. Bruel, A. Jamil, T. El Rhafiki, Y. Zerouli, Energy Storage: Applications and Challenges, Solar Energy Materials and Solar Cells 120 (2013) 59-80.
DOI: 10.1016/j.solmat.2013.08.015
Google Scholar
[10]
L. Zhang, R. Li, B. Tang, P. Wang, Solar-thermal conversion and thermal energy storage of graphene foam-based composite, Nanoscale 8 (2016) 14600-14607.
DOI: 10.1039/c6nr03921a
Google Scholar
[11]
Yadav, A., Barman, B., Kumar, V., Kardam, A.S., Narayanan, S., Verma, A., Madhwal, D., Shukla, P., and Jain V.K, Solar thermal charging properties of graphene oxide embedded myristic acid composites phase change material. AIP Publishing (2016).
DOI: 10.1063/1.4947635
Google Scholar
[12]
Mehrali, M., Latibari, S. R., Mehrali, M., Mahlia, T.M.I., Metselaar, H.S., Naghavi, M.S., and Akhiani, A.R, Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material, Applied Thermal Engineering (2013) 663-640.
DOI: 10.1016/j.applthermaleng.2013.08.035
Google Scholar
[13]
N.Z.I. Mohd Sallehin, N. Md. Yatim, Influence of difference length segmented Bi2Te2.95Se0.05/SnSe0.95I0.05 on thermoelectric's seebeck coefficient, Advanced Science Letters 23 (5) (2017) 4496-4499.
DOI: 10.1166/asl.2017.8989
Google Scholar
[14]
N.Z.I. Mohd Sallehin, N. Md. Yatim, and S. Suhaimi, A review on fabrication methods for segmented thermoelectric structure, AIP Conference Proceedings 1972, 030003 (2018).
DOI: 10.1063/1.5041224
Google Scholar