Band Gap Narrowing of MgO and Mg0.95Zn0.05O Nanostructures

Article Preview

Abstract:

Preparation of MgO and Mg0.95Zn0.05O nanomaterials using self-propagating combustion method are done to investigate the effect of doping on the band gap energy. The synthesis condition has been optimized to obtain pure MgO and Mg0.95Zn0.05O materials which confirmed by XRD. FESEM results shows agglomeration of crystallite with average crystallite size of samples between 30 nm to 125 nm. The band gap obtained from the measurement of UV-Vis NIR spectrophotometer for MgO nanostructure is 6.36 eV which is lower than bulk MgO of 7.8 eV. The presence of Zn in Mg0.95Zn0.05O sample causes the narrowing of band gap to 5.33 eV.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 307)

Pages:

273-278

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.P. Kalyanikutty, F.L. Deepak, C. Edem, A. Govindaraj, C.N.R. Rao, Carbon-assisted synthesis of nanowires and related nanostructures of MgO, Mater. Res. Bull. 40 (2005) 831-839.

DOI: 10.1016/j.materresbull.2005.01.013

Google Scholar

[2] F. Meshkani, M. Rezaei, Facile synthesis of nanocrystalline magnesium oxide with high surface area, Powder Technol. 196 (2009) 85–88.

DOI: 10.1016/j.powtec.2009.07.010

Google Scholar

[3] T. Qiu, X.L. Wu, F.Y. Jin, A.P. Huang, P. K. Chu, Self-assembled growth of MgO nanosheet arrays via a micro-arc oxidation technique, Appl. Surf. Sci. 253 (2007) 3987–3990.

DOI: 10.1016/j.apsusc.2006.08.034

Google Scholar

[4] I. Ercan, O. Kaygili, T. Ates, B. Gunduzc, N. Bulut, S. Koytepe, I. Ozcan, The effects of urea content on the structural, thermal and morphological properties of MgO nanopowders, Ceram. Int. 44 (2018) 14523–14527.

DOI: 10.1016/j.ceramint.2018.05.068

Google Scholar

[5] N. Kamarulzaman, N. F. Chayed, N. Badar, M. F. Kasim, D. T. Mustaffa, K. Elong, R. Rusdi, T. Oikawa, H. Furukawa, Band Gap Narrowing of 2-D Ultra-Thin MgO Graphene-Like Sheets, ECS J. Solid State Sci. Technol.  5 (2016) Q3038-Q3045.

DOI: 10.1149/2.0081611jss

Google Scholar

[6] K. Mageshwari, S.S. Mali, R. Sathyamoorthy, P.S. Patil. Template-free synthesis of MgO nanoparticles for effective photocatalytic applications. Powder Technol. 249 (2013) 456-462.

DOI: 10.1016/j.powtec.2013.09.016

Google Scholar

[7] R. Verma, K. Kumar Naik, J. Gangwar, A. K. Srivastava, Morphology, mechanism and optical properties of nanometer-sized MgO synthesized via facile wet chemical method, Mater. Chem. Phys., 148 (2014) 1064.

DOI: 10.1016/j.matchemphys.2014.09.018

Google Scholar

[8] N. Kamarulzaman, M.F Kasim, R. Rusdi, Band gap narrowing and widening of ZnO nanostructures and doped materials, Nanoscale Res. Lett. 10:346 (2015) 1-12.

DOI: 10.1186/s11671-015-1034-9

Google Scholar

[9] N. Badar, N. Kamarulzaman, R. Rusdi, N.D.A. Aziz, H.K. Fun, Increased conductivities of Cr doped Al2xCrxO3 powders due to band gap narrowing, Physica B 437(2014) 32–35.

DOI: 10.1016/j.physb.2013.11.059

Google Scholar

[10] N. F. Chayed, N. Badar, R. Rusdi, A. Azahidi, N. Kamarulzaman, Band gap energies of Li2xMg(1-x)O materials synthesized by the sol–gel method, J. Cryst. Growth 362 (2013) 268–270.

DOI: 10.1016/j.jcrysgro.2011.12.090

Google Scholar

[11] K. Joshi, M. Rawat, S. K. Gautam, R.G. Singh, R.C. Ramola, F.Singh, Band gap widening and narrowing in Cu-doped ZnO thin films, J. Alloys Compd. 680 (2016) 252-258.

DOI: 10.1016/j.jallcom.2016.04.093

Google Scholar

[12] V. Vasanthi, M. Kottaisamy, K. Anitha, V. Ramakrishnan, Near UV excitable yellow light emitting Zn doped MgO for WLED application, Superlattices Microstruct. 106 (2017) 174-183.

DOI: 10.1016/j.spmi.2017.03.050

Google Scholar

[13] W. Wang, X. Qiao, J. Chen, H. Li, Facile synthesis of magnesium nanoplates via chemical precipitation, Mater. Let. (2007) 3218-3220.

DOI: 10.1016/j.matlet.2006.11.071

Google Scholar

[14] L.A. Ma, Z. X. Lin, J. Y. Lin, Y.A. Zhang, L. Q. Hua, T. L. Guo, Large-scale growth of ultrathin MgO nanowires and evaluate their field emission properties, Physica E 41(2009) 1500–1503.

DOI: 10.1016/j.physe.2009.04.028

Google Scholar

[15] L. Kumari, W.Z. Li, C. H. Vanoy, R. M. Leblanc, D.Z. Wang, Synthesis, characterization and optical properties of Mg(OH)2 micro-/nanostructure and its conversion to MgO, Ceram. Inter. 35 (2009) 3355-3364.

DOI: 10.1016/j.ceramint.2009.05.035

Google Scholar

[16] F. Mohandes, F. Davar, M. Salavati-Niasari, Magnesium oxide nanocrystals via thermal decomposition of magnesium oxalate, J. Phys. Chem. of Solids 71 (2010) 1623–1628.

DOI: 10.1016/j.jpcs.2010.08.014

Google Scholar

[17] F. Gu, C.Z. Li, and H.B. Jiang, Combustion synthesis and photoluminescence of MgO: Eu3+ nanocrystals with Li addition, J. Cryst. Growth 289 (2006) 400-404.

DOI: 10.1016/j.jcrysgro.2005.11.116

Google Scholar

[18] K. Kaviyarasu, P.A. Devarajan, Synthesis and characterization studies of cadmium doped MgO nanocrystals for optoelectronics application, Adv. Appl. Sci. Res., 2 (2011) 131-138.

Google Scholar

[19] J. Zeng, C. Hai, X. Ren, X. Li, Y. Shen, O. Dong, L. Zhang, Y. Sun, L. Ma, X. Zhang, Shengde Dong, Y. Zhou, Facile triethanolamine-assisted combustion synthesized layered LiNi1/ 3Co1/3Mn1/3O2 cathode materials with enhanced electrochemical performance for lithium-ion batteries, J. Alloys Compd. 735 (2018) 1977-1985.

DOI: 10.1016/j.jallcom.2017.11.321

Google Scholar

[20] R. Rusdi, A.A. Rahman, N.S. Mohamed, N. Kamarudin, N. Kamarulzaman, Preparation and band gap energies of ZnO nanotubes, nanorods and spherical nanostructures, Powder Technol. 210 (2011) 18–22.

DOI: 10.1016/j.powtec.2011.02.005

Google Scholar

[21] N. Kamarulzaman, D. T. Mustaffa, N. F. Chayed, N. Badar, M. F. M. Taib, A. B. M. A. Ibrahim, Appl. Nanosci. (2018), https://doi.org/10.1007/s13204-018-0859-9.

Google Scholar

[22] N. Kamarulzaman, N.D. Abdul Aziz, M.F. Kasim, N.F. Chayed, R.H. Yahaya Subban, N. Badar, Anomalies in wide band gap SnO2 nanostructures, J. Solid State Chem. (2019), doi: https://doi.org/10.1016/j.jssc.2019.05.035. (In Press).

DOI: 10.1016/j.jssc.2019.05.035

Google Scholar

[23] N. Kamarulzaman, M.F. Kasim, N.F. Chayed, Elucidation of the highest valence band and lowest conduction band shifts using XPS for ZnO and Zn0.99Cu0.01O band gap changes, Results in Phys. 6 (2016) 217–230.

DOI: 10.1016/j.rinp.2016.04.001

Google Scholar