In Situ Combustion Synthesis in Air of Calcium Titanate Powders Using Minerals as a Calcium Source

Article Preview

Abstract:

Calcium titanate (CaTiO3) was synthesized through combustion in air from calcium sources of raw minerals (lime-stone and calcite), anatase titanium dioxide (A-TiO2) and magnesium (Mg). The syntheses were divided into two reactant systems (lime-stone/A-TiO2/Mg and calcite/A-TiO2/Mg. Before synthesis, the raw minerals and A-TiO2 were high-energy milled for 30 min. These powders were then separately mixed with Mg by ball milling. After synthesis, the as-combusted products were leached with 2 M HCl solution to remove by-products and impurities. A sequential mechanism for the in-situ combustion was proposed by using data from simultaneous thermal analysis (STA) together with thermodynamic values calculated with HSC software. XRD results showed that the as-leached products from both reactant systems mainly contained CaTiO3. FT-IR spectroscopy indicated that the as-leached products had Ca-Ti-O and Ti-O functional groups. In addition, SEM observation of the as-leached products revealed cuboid-like crystals with a particle size of about 100 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-25

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Ctibor, J. Kotlan, Z. Pala, J. Sedlacek, Z. Hajkova and T. M. Grygar: Mater. Res. Bull., Vol. 72(2015), p.123.

DOI: 10.1016/j.materresbull.2015.07.041

Google Scholar

[2] X. Lu, Q. Li and D. Yang: J. Electroceram., Vol. 14(2005), p.59.

Google Scholar

[3] L.S. Cavalcante, V.S. Marques, J.C. Sczancoski, M.T. Escote, M.R. Joya, J.A. Varela, M.R.M.C. Santos, P.S. Pizani and E. Longo: Chem. Eng. J., Vol. 143(2008), p.299.

DOI: 10.1016/j.cej.2008.05.017

Google Scholar

[4] K. W. Ciurowa, P. Dulian, A. Nosal and J. Domagała: J. Therm. Anal. Calorim., Vol. 101(2010), p.471.

DOI: 10.1007/s10973-010-0802-0

Google Scholar

[5] D. Talantikite and L. T. Benziada: Solid State Sci., Vol. 11(2009), p.151.

Google Scholar

[6] P. K. Mallik, G. Biswal, S.C Patnaik and S. K. Senapati: IOP Conf. Ser.: Mater. Sci. Eng., Vol. 75(2015), 012005.

DOI: 10.1088/1757-899x/75/1/012005

Google Scholar

[7] A. K. Dubey, G. Tripathi and B. Basu: J. Biomed. Mater. Res. B., Vol. 95B(2)(2010), p.320.

Google Scholar

[8] S. Holliday and A. Stanishevsky: Surf. Coat. Technol., Vol. 188-189(2004), p.741.

Google Scholar

[9] D. Wang, Z. Guo, Y. Chen, J. Hao and W. Liu: Inorg. Chem., Vol. 46(2007), p.7707.

Google Scholar

[10] S. Palaniandy and N. H. Jamil: J. Alloys. Compd., Vol. 476(2009), p.894.

Google Scholar

[11] V. Berbenni and A. Marini: J. Mater. Sci., Vol. 39(2004), p.5279.

Google Scholar

[12] G. Mi, Y. Murakami, D. Shindo and F. Saito: Powder Technol., Vol. 104(1999), p.75.

Google Scholar

[13] K. H. Park and H. G. Kim: J. Korean Phys. Soc., Vol. 56(2)(2010), p.648.

Google Scholar

[14] S. A. U. Portia and K. Ramamoorthy: IJASRM., Vol. 3(11)(2018), p.349.

Google Scholar

[15] G. Gralik, A. E. Thomsen, C. A. Moraes, F. R. Pereira and D. Hotza: Process. Appl. Ceram., Vol. 8(2)(2014), p.53.

Google Scholar

[16] S. Kaciulis, G Mattogno, A. Napoli, E. Bemporad, F. Ferrari, A. Montenero and G. Gnappi: J. Electron Spectros. Relat. Phenomena., Vol. 95(1)(1998), p.61.

DOI: 10.1016/s0368-2048(98)00202-3

Google Scholar

[17] J. P. Wiff, V. M. Fuenzalida, J. L. Arias and M. S. Fernandez: Mater. Lett., Vol. 61(13)(2007), p.2739.

Google Scholar

[18] P. Julphunthong, B. Phengraek, A. Laowanidwatana and T. Bongkarn: Integr. Ferroelectr., Vol. 150(1)(2014), p.107.

Google Scholar

[19] G. Liu, K. Chen and J. Li: Scripta Mater., Vol. 157(2018), p.167.

Google Scholar

[20] T. Chanadee: Int. J. Self-Propag. High-Temp. Synth., Vol. 26(1)(2017), p.40.

Google Scholar

[21] P. Raschman and A. Fedorockova: Chem. Eng. Sci., Vol. 63(2008), p.576.

Google Scholar

[22] U. Demircan, B. Derin and O. Yucel: Mater. Res. Bull., Vol. 42(2007), p.312.

Google Scholar

[23] X. Su, F. Fu, Y. Yan, G. Zheng, T. Liang, Q. Zhang, X. Cheng, D. Yang, H. Chi, X. Tang, Q. Zhang and C. Uher: Nat. Commun., Vol. 5(2014), 4908.

Google Scholar

[24] S. Tekumalla, Y. Nandigam, N. Bibhanshu, S. Rajashekara, C. Yang, S. Suwas and M. Gupta: Sci. Rep., Vol. 8(2018), 7038.

DOI: 10.1038/s41598-018-25527-0

Google Scholar

[25] D. Y. Hwang and A. M. Mebel: J. Phys. Chem., Vol. 104(2000), p.7646.

Google Scholar

[26] D. Zhang and Z. Liu: AMM., Vol. 26-28(2010), p.835.

Google Scholar

[27] W. Dong, G. Zhao, Q, Bao and X. Gu: Mater. Sci-Medzg., Vol. 21(4)(2015), p.583.

Google Scholar

[28] S. J. Mousavi: Dig. J. Nanomater. Bios., Vol. 9(3)(2014), p.1059.

Google Scholar