Formation of Co3O4 Nanoparticles Using Moringa oleifera Leaves Extract through Two Phases System of Hexane-Water and their Photocatalytic Activity

Article Preview

Abstract:

Co3O4 nanoparticles (NP) have been successfully formed using Moringa oleifera leaves extract (MLE) through two phases’s system of hexane–water. Co3O4 NP was further characterized using UV-Vis DRS, FT-IR, TEM, SEM-EDX, XRD and UV-Vis spectrophotometer. FTIR spectra of Co3O4 NP had strong absorption bands at wavenumbers of 538 and 670 cm-1. The bandgap energy value of Co3O4 NP was 1.43 eV. In addition, the characterization of SEM and TEM showed that the morphology of Co3O4 NP was in the spheres form with particle sizes around 73 nm. The photocatalytic activity of Co3O4 NP was carried out for methylene blue (MB) photodegradation. Co3O4 NP had photodegradation activity against MB under visible light irradiation of 91% for 120 min.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-13

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Patil, P. Joshi, M. Chougule, and S. Sen: Soft Nanosci. Lett. Vol. 2 (2012), p.1–7.

Google Scholar

[2] Y.Gu, F. Jian and X. Wang X: Thin Solid Films Vol. 517 (2008), p.652–655.

Google Scholar

[3] N.N. Binitha, P.V. Suraja, Z. Yaakob, R. Resmi and S. Silija: J. Sol-Gel Sci. Vol. 53 (2010) p.466–469.

DOI: 10.1007/s10971-009-2098-8

Google Scholar

[4] J. Malleshappa , H. Nagabhusana, S.C. Sharma, Y.S. Vidya, K.S. Anantharaju, and S.C. Prashanta: Spectrochim. Acta A: Mol. Biomol. Spectrosc. Vol. 149 (2015) pp.452-462.

Google Scholar

[5] C. Vidya, S. Hiremath, M.N. Chandraprabha, M.A.L. Antonyraj, I.V. Gopal, A. Jain, and K. Bansal: Int. J. Current Eng. Technol. (2013) p.118–120.

Google Scholar

[6] R.K. Sharma, and R. Ghose: J. Alloys Compd. Vol. 686 (2016) p.64–73.

Google Scholar

[7] J.A. Dias, V.L. Arantes, A.S. Ramos, T.R. Giraldi, M.Z. Minucci, and S.C. Maestrelli: Ceram. Int. Vol. 42 (2) (2016) p.3485–3490.

Google Scholar

[8] Y. Yulizar, N. Wahyuningsih, N.D. Asri, and H. Watarai: Makara J. Sci. Vol. 16 (3) (2012) p.169–177.

Google Scholar

[9] A.L. Widyaningtyas, Y. Yulizar, and D.O.B. Apriandanu: IOP Conf. Ser. Mater. Sci. Eng. Vol. 509 (2019) p.012022.

DOI: 10.1088/1757-899x/509/1/012022

Google Scholar

[10] M. Wardani, Y. Yulizar, I. Abdullah, and D.O.B. Apriandanu: IOP Conf. Ser. Mater. Sci. Eng. 509 (2019) p.012077.

DOI: 10.1088/1757-899x/509/1/012077

Google Scholar

[11] Y. Yulizar, R. Bakri, D.O.B. Apriandanu and T. Hidayat: Nano-Struct. Nano-Objects Vol. 16 (2018) p.300–305.

DOI: 10.1016/j.nanoso.2018.09.003

Google Scholar

[12] N.O.M. Dewi, Y. Yulizar, and D.O.B. Apriandanu: IOP Conf. Ser. Mater. Sci. Eng. 509 (2019) p.012105.

Google Scholar

[13] R. Ikalinus R, S.K. Widyastuti, N. Luh, and E.Setiasih: Indonesia Medicus Veterinus Vol. 4 (1) (2015) p.71–79.

Google Scholar

[14] Y. Yulizar and Q. Ayun: IOP conf. series: Earth Environ. Sci. Vol. 60 (1) (2017) p.012006.

Google Scholar

[15] B. Xiao, K. Zhao, L. Zhang, T. Cai, X. Zhang, Z. Wang, J. Yuan, L. Yang, P. Gao P, and D. He: Catalysis Commun. Vol. 116 (2018) pp.1-4.

Google Scholar

[16] K.F. Wadekar, K.R. Nemade, and S.A. Waghuley: J. Chem. Sci. Res. Vol. 7 (71) (2017) p.53–55.

Google Scholar