[1]
L. G. de Carvalho, M. S. Andrade, R. L. Plaut, A. F. Padilha, A dilatometric study of the phase transformations in 300 and 350 maraging steels during continuous heating rates, Mater. Res. 16 (2013) 740-744.
DOI: 10.1590/s1516-14392013005000069
Google Scholar
[2]
L.G. de Carvalho, R.L. Plaut, N.B. de Lima, A.F. Padilha, Kinetics of Martensite Reversion to Austenite during Overaging in a Maraging 350 Steel, ISIJ Int. 59 (2019) 1119-1127.
DOI: 10.2355/isijinternational.isijint-2018-610
Google Scholar
[3]
D.P. Fonseca, A.L. Feitosa, L.G. de Carvalho LG, R.L. Plaut, A.F. Padilha. A Short Review on Ultra-High-Strength Maraging Steels and Future Perspectives. Mater. Res. 24 (2021) e20200470.
DOI: 10.1590/1980-5373-mr-2020-0470
Google Scholar
[4]
R.F. Decker, S. Floreen, Maraging steels – the first 30 years, in: R.K. Wilson (Ed.), Maraging steels: recent developments and applications, TMS, Warrendale, 1988, pp.1-38.
Google Scholar
[5]
M. Schmidt, K. Rohrbach, Maraging steels, in: Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys, Asm International, Materials Park, 2005, pp.1225-1237.
DOI: 10.31399/asm.hb.v01.a0001043
Google Scholar
[6]
M. Schmidt, K. Rohrbach, Heat treating of maraging Steels, in: Volume 4: Heat Treating, Asm International, Materials Park, 2005, pp.528-548.
Google Scholar
[7]
W. Sha, Z. Guo, Maraging steels: modeling of microstructure, properties, and applications, first ed., Woodhead Publishing Limited, Cambridge, (2009).
Google Scholar
[8]
G.S. Avadhani, Optimization of process parameters for the manufacturing of rocket casing: a study using processing maps, J. Mater. Eng. Perform. 12 (2003) 609-622.
Google Scholar
[9]
R. Tewari, S. Mazumder, I.S. Batra, G.K. Dey, S. Banerjee, Precipitation in 18wt% Ni maraging steel of grade 350, Acta Mater. 48 (2000) 1187-1200.
DOI: 10.1016/s1359-6454(99)00370-5
Google Scholar
[10]
W. Sha, A. Cerezo, G.D.W. Smith, Phase chemistry and precipitation reactions in maraging steels: Part III. Model alloys, Metall. Trans. A. 24 (1993) 1241-1249.
DOI: 10.1007/bf02668192
Google Scholar
[11]
W. Sha, A. Cerezo, G.D.W. Smith, Phase chemistry and precipitation reactions in maraging steels: Part IV. Discussion and Conclusions, Metall. Trans. A. 24 (1993) 1251-1256.
DOI: 10.1007/bf02668193
Google Scholar
[12]
S. Floreen, The physical metallurgy of maraging steels, Met. Rev. 13 (1968) 115-128.
DOI: 10.1179/mtlr.1968.13.1.115
Google Scholar
[13]
V.K. Vasudevan, S.J. Kim, C.M. Wayman, Precipitation reactions and strengthening behavior in 18 wt pct nickel maraging steels, Metall. Trans. A. 21 (1990) 2655-2668.
DOI: 10.1007/bf02646061
Google Scholar
[14]
W. Sha, A. Cerezo, G.D.W. Smith, Phase chemistry and precipitation reaction in maraging steels: Part I. Introduction and study of Co-containing C-300 steel, Metall. Trans, A. 24 (1993) 1221-1232.
DOI: 10.1007/bf02668190
Google Scholar
[15]
O. Moshka, M. Pinkas, E. Brosh, V. Ezersky, L. Meshi, Addressing the issue of precipitates in maraging steels – Unambiguous answer, Mater. Sci. Eng. A. 638 (2015) 232-239.
DOI: 10.1016/j.msea.2015.04.067
Google Scholar
[16]
Z. Guo, W. Sha, Quantification of precipitation hardening and evolution of precipitates. Mater. Trans. 43 (2002) 1273-1282.
DOI: 10.2320/matertrans.43.1273
Google Scholar
[17]
J.M. Pardal, S.S.M. Tavares, V.F. Terra, M.R. da Silva, D.R. dos Santos, Modelling of precipitation hardening during aging and overaging of 18Ni-Co-Mo-Ti maraging steel 300, J. Alloys Compd. 393 (2005) 109-113.
DOI: 10.1016/j.jallcom.2004.09.049
Google Scholar
[18]
W. Sha, Quantification of age hardening in maraging steels and a Ni-base superalloy, Scr. Mater. 42 (2000) 549-553.
DOI: 10.1016/s1359-6462(99)00394-2
Google Scholar
[19]
E. A. Wilson, Quantification of age hardening in a Fe-12Ni-6Mn alloy, Scr. Mater. 36 (1997) 1179-1185.
DOI: 10.1016/s1359-6462(97)00006-7
Google Scholar
[20]
V.K. Viswanathan, G.K. Dey, M.K. Asundi, Precipitation hardening in 350 grade maraging steel, Metall. Trans. A. 24 (1993) 2429-2442.
DOI: 10.1007/bf02646522
Google Scholar
[21]
S. Floreen, R.F Decker, Heat treatment of 18% Ni maraging steel. Trans. ASM. 55 (1962) 58-76.
Google Scholar
[22]
P.P. Sinha, K.T. Tharian, K. Sreekumar, K.V. Nagarajan, D.S. Sarma, Effect of aging on microstructure and mechanical properties of cobalt-free 18%Ni (250 grade) maraging steel, Mater. Sci. Technol. 14 (1998) 1-9.
DOI: 10.1179/mst.1998.14.1.1
Google Scholar
[23]
E.J. Mittemeijer, Analysis of the kinetics of phase transformations, J. Mater. Sci. 27 (1992) 3977-3987.
Google Scholar
[24]
M. J. Starink, Kinetic equations for diffusion-controlled precipitation reactions. J. Mater. Sci. 32 (1997) 4061-4070.
Google Scholar
[25]
D.T. Peters, C.R. Cupp, The kinetics of aging reactions in 18 pct Ni maraging steels, Trans. AIME. 236 (1966) 1420-1429.
Google Scholar
[26]
A.N. Kolmogorov, On the statistical theory of metal solidification. Izv. Akademii Nauk. SSSR. 3 (1937) 355-359.
Google Scholar
[27]
W.A. Johnson, R.F. Mehl, Reaction kinetics in processes of nucleation and growth. Transactions of AIME. 1939; 135; 396-415.
Google Scholar
[28]
M. Avrami, Kinetics of phase change, I General theory. J. Chem. Phys. 7 (1939) 1103-1112.
Google Scholar
[29]
M. Avrami, Kinetics of phase change, I transformation‐time relations for a random distribution of nuclei, J. Chem. Phys. 8 (1940) 212-224.
DOI: 10.1063/1.1750631
Google Scholar
[30]
M. Avrami, Granulation, phase change, and microstructure kinetics of phase change. III, J. Chem. Phys. 9 (1941) 177-184.
DOI: 10.1063/1.1750872
Google Scholar
[31]
J.W. Christian, Transformations in metals and alloys, third ed., Elsevier Science Ltd., Oxford, (2002).
Google Scholar
[32]
P.R. Rios, A.F. Padilha, Transformações de fase, first ed., Artliber Editora, São Paulo, (2007).
Google Scholar
[33]
J.B. Austin, R.L. Rickett, Kinetics of the decomposition of austenite at a constant temperature. Trans. AIME. 135 (1939) 396-415.
Google Scholar
[34]
E.S. Lee, Y.G. Kim, A transformation kinetic model and its application to Cu-Zn-Al shape memory alloys—I. Isothermal conditions, Acta Metall. Mater. 38 (1990) 1669-1676.
DOI: 10.1016/0956-7151(90)90009-6
Google Scholar
[35]
J.R. Guimarães, P.R. Rios, A.L. Alves, Martensite's Logistic Paradigm, Mater. Res. 24 (2021) e20200370.
Google Scholar
[36]
J.W. Martin, Precipitation hardening, second ed., Butterworth-Heinemann, Woburn, (1998).
Google Scholar
[37]
A. Agnel, F. Hedin, G. Maeder, C. Servant, P. Lacombe, Etude par diffusion des rayons X aux petits angles des zones formees dans les alliages Fe-16,4Ni-8,2Mo et Fe-15,4Ni-10,2Mo, Acta Metall. 25 (1977) 1445-1457.
DOI: 10.1016/0001-6160(77)90075-x
Google Scholar
[38]
C. Servant, G. Maeder, G. Cizeron, A small-angle x-ray scattering investigation of the zone formation of maraging, type alloys, Metall. Trans. A. 6 (1975) 981-990.
DOI: 10.1007/bf02661350
Google Scholar