Precipitation Kinetic Analysis in a Maraging 350 Steel Using KJMA and Austin-Rickett Equations

Article Preview

Abstract:

Maraging steels are martensitic steels hardened by intermetallic compounds that precipitate during aging heat treatments. During aging of these steels complex phenomena involving nucleation and growth of several phases as well as changes in the precipitates, morphology and stoichiometry take place. The present work aims to study the kinetics of precipitation in a maraging 350 steel through the KJMA and Austin-Rickett (AR) equations. Analysed data were obtained from Vickers microhardness measurements carried out in samples heat-treated between 440 and 560 °C. Variation in the n-constant has been observed for both equations, indicating changes in the precipitation behavior. However, the n-constant values obtained from AR equation follow the microstructural changes observed in previous works on maraging steels. Interpretation of the n-constants using the AR equation was linked to the precipitation on dislocations at 440 °C, the growth of finite long cylinders in comparison to their separation at 480 °C, and general particle growth from small dimensions at 520, and 560 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-128

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. G. de Carvalho, M. S. Andrade, R. L. Plaut, A. F. Padilha, A dilatometric study of the phase transformations in 300 and 350 maraging steels during continuous heating rates, Mater. Res. 16 (2013) 740-744.

DOI: 10.1590/s1516-14392013005000069

Google Scholar

[2] L.G. de Carvalho, R.L. Plaut, N.B. de Lima, A.F. Padilha, Kinetics of Martensite Reversion to Austenite during Overaging in a Maraging 350 Steel, ISIJ Int. 59 (2019) 1119-1127.

DOI: 10.2355/isijinternational.isijint-2018-610

Google Scholar

[3] D.P. Fonseca, A.L. Feitosa, L.G. de Carvalho LG, R.L. Plaut, A.F. Padilha. A Short Review on Ultra-High-Strength Maraging Steels and Future Perspectives. Mater. Res. 24 (2021) e20200470.

DOI: 10.1590/1980-5373-mr-2020-0470

Google Scholar

[4] R.F. Decker, S. Floreen, Maraging steels – the first 30 years, in: R.K. Wilson (Ed.), Maraging steels: recent developments and applications, TMS, Warrendale, 1988, pp.1-38.

Google Scholar

[5] M. Schmidt, K. Rohrbach, Maraging steels, in: Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys, Asm International, Materials Park, 2005, pp.1225-1237.

DOI: 10.31399/asm.hb.v01.a0001043

Google Scholar

[6] M. Schmidt, K. Rohrbach, Heat treating of maraging Steels, in: Volume 4: Heat Treating, Asm International, Materials Park, 2005, pp.528-548.

Google Scholar

[7] W. Sha, Z. Guo, Maraging steels: modeling of microstructure, properties, and applications, first ed., Woodhead Publishing Limited, Cambridge, (2009).

Google Scholar

[8] G.S. Avadhani, Optimization of process parameters for the manufacturing of rocket casing: a study using processing maps, J. Mater. Eng. Perform. 12 (2003) 609-622.

Google Scholar

[9] R. Tewari, S. Mazumder, I.S. Batra, G.K. Dey, S. Banerjee, Precipitation in 18wt% Ni maraging steel of grade 350, Acta Mater. 48 (2000) 1187-1200.

DOI: 10.1016/s1359-6454(99)00370-5

Google Scholar

[10] W. Sha, A. Cerezo, G.D.W. Smith, Phase chemistry and precipitation reactions in maraging steels: Part III. Model alloys, Metall. Trans. A. 24 (1993) 1241-1249.

DOI: 10.1007/bf02668192

Google Scholar

[11] W. Sha, A. Cerezo, G.D.W. Smith, Phase chemistry and precipitation reactions in maraging steels: Part IV. Discussion and Conclusions, Metall. Trans. A. 24 (1993) 1251-1256.

DOI: 10.1007/bf02668193

Google Scholar

[12] S. Floreen, The physical metallurgy of maraging steels, Met. Rev. 13 (1968) 115-128.

DOI: 10.1179/mtlr.1968.13.1.115

Google Scholar

[13] V.K. Vasudevan, S.J. Kim, C.M. Wayman, Precipitation reactions and strengthening behavior in 18 wt pct nickel maraging steels, Metall. Trans. A. 21 (1990) 2655-2668.

DOI: 10.1007/bf02646061

Google Scholar

[14] W. Sha, A. Cerezo, G.D.W. Smith, Phase chemistry and precipitation reaction in maraging steels: Part I. Introduction and study of Co-containing C-300 steel, Metall. Trans, A. 24 (1993) 1221-1232.

DOI: 10.1007/bf02668190

Google Scholar

[15] O. Moshka, M. Pinkas, E. Brosh, V. Ezersky, L. Meshi, Addressing the issue of precipitates in maraging steels – Unambiguous answer, Mater. Sci. Eng. A. 638 (2015) 232-239.

DOI: 10.1016/j.msea.2015.04.067

Google Scholar

[16] Z. Guo, W. Sha, Quantification of precipitation hardening and evolution of precipitates. Mater. Trans. 43 (2002) 1273-1282.

DOI: 10.2320/matertrans.43.1273

Google Scholar

[17] J.M. Pardal, S.S.M. Tavares, V.F. Terra, M.R. da Silva, D.R. dos Santos, Modelling of precipitation hardening during aging and overaging of 18Ni-Co-Mo-Ti maraging steel 300, J. Alloys Compd. 393 (2005) 109-113.

DOI: 10.1016/j.jallcom.2004.09.049

Google Scholar

[18] W. Sha, Quantification of age hardening in maraging steels and a Ni-base superalloy, Scr. Mater. 42 (2000) 549-553.

DOI: 10.1016/s1359-6462(99)00394-2

Google Scholar

[19] E. A. Wilson, Quantification of age hardening in a Fe-12Ni-6Mn alloy, Scr. Mater. 36 (1997) 1179-1185.

DOI: 10.1016/s1359-6462(97)00006-7

Google Scholar

[20] V.K. Viswanathan, G.K. Dey, M.K. Asundi, Precipitation hardening in 350 grade maraging steel, Metall. Trans. A. 24 (1993) 2429-2442.

DOI: 10.1007/bf02646522

Google Scholar

[21] S. Floreen, R.F Decker, Heat treatment of 18% Ni maraging steel. Trans. ASM. 55 (1962) 58-76.

Google Scholar

[22] P.P. Sinha, K.T. Tharian, K. Sreekumar, K.V. Nagarajan, D.S. Sarma, Effect of aging on microstructure and mechanical properties of cobalt-free 18%Ni (250 grade) maraging steel, Mater. Sci. Technol. 14 (1998) 1-9.

DOI: 10.1179/mst.1998.14.1.1

Google Scholar

[23] E.J. Mittemeijer, Analysis of the kinetics of phase transformations, J. Mater. Sci. 27 (1992) 3977-3987.

Google Scholar

[24] M. J. Starink, Kinetic equations for diffusion-controlled precipitation reactions. J. Mater. Sci. 32 (1997) 4061-4070.

Google Scholar

[25] D.T. Peters, C.R. Cupp, The kinetics of aging reactions in 18 pct Ni maraging steels, Trans. AIME. 236 (1966) 1420-1429.

Google Scholar

[26] A.N. Kolmogorov, On the statistical theory of metal solidification. Izv. Akademii Nauk. SSSR. 3 (1937) 355-359.

Google Scholar

[27] W.A. Johnson, R.F. Mehl, Reaction kinetics in processes of nucleation and growth. Transactions of AIME. 1939; 135; 396-415.

Google Scholar

[28] M. Avrami, Kinetics of phase change, I General theory. J. Chem. Phys. 7 (1939) 1103-1112.

Google Scholar

[29] M. Avrami, Kinetics of phase change, I transformation‐time relations for a random distribution of nuclei, J. Chem. Phys. 8 (1940) 212-224.

DOI: 10.1063/1.1750631

Google Scholar

[30] M. Avrami, Granulation, phase change, and microstructure kinetics of phase change. III, J. Chem. Phys. 9 (1941) 177-184.

DOI: 10.1063/1.1750872

Google Scholar

[31] J.W. Christian, Transformations in metals and alloys, third ed., Elsevier Science Ltd., Oxford, (2002).

Google Scholar

[32] P.R. Rios, A.F. Padilha, Transformações de fase, first ed., Artliber Editora, São Paulo, (2007).

Google Scholar

[33] J.B. Austin, R.L. Rickett, Kinetics of the decomposition of austenite at a constant temperature. Trans. AIME. 135 (1939) 396-415.

Google Scholar

[34] E.S. Lee, Y.G. Kim, A transformation kinetic model and its application to Cu-Zn-Al shape memory alloys—I. Isothermal conditions, Acta Metall. Mater. 38 (1990) 1669-1676.

DOI: 10.1016/0956-7151(90)90009-6

Google Scholar

[35] J.R. Guimarães, P.R. Rios, A.L. Alves, Martensite's Logistic Paradigm, Mater. Res. 24 (2021) e20200370.

Google Scholar

[36] J.W. Martin, Precipitation hardening, second ed., Butterworth-Heinemann, Woburn, (1998).

Google Scholar

[37] A. Agnel, F. Hedin, G. Maeder, C. Servant, P. Lacombe, Etude par diffusion des rayons X aux petits angles des zones formees dans les alliages Fe-16,4Ni-8,2Mo et Fe-15,4Ni-10,2Mo, Acta Metall. 25 (1977) 1445-1457.

DOI: 10.1016/0001-6160(77)90075-x

Google Scholar

[38] C. Servant, G. Maeder, G. Cizeron, A small-angle x-ray scattering investigation of the zone formation of maraging, type alloys, Metall. Trans. A. 6 (1975) 981-990.

DOI: 10.1007/bf02661350

Google Scholar