Movement of a Hydrogen Atom through Interstices in a Diamond-Like Lattice

Article Preview

Abstract:

The behavior of hydrogen atom isotopes in a diamond-like lattice without defects is studied. The movement of the hydrogen atom along the interstices is considered. The collective nature of the movement of the hydrogen atom (and its isotopes) is taken into account, which consists in the fact that any movement of the hydrogen atom is accompanied by reversible displacements of the nearest lattice atoms. To take into account this nature of the movement, local chains are built. As a result, a new one-dimensional Lagrangian is derived, the equations of motion from which lead to a soliton-like solution in the form of a kink - Frenkel-Kontorova soliton. The study of the structure of such a kink and the distribution of displacement velocities in it reveals that the kink formed by tritium moves faster through the lattice than the kinks formed by deuterium and hydrogen.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

162-171

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Herring, N. M. Johnson, C. G. Van de Walle. Phys. Rev. B. 64, 125209 (2001).

Google Scholar

[2] R. Jones. Phil. Trans. R. Soc. Land. A,350, No. 1693, 189 (1995).

Google Scholar

[3] U. Lindefeltt , A. Zunger. J. Phys. C: Solid State Phys., 17 6047 (1984).

Google Scholar

[4] L. Bilteanu, M. Posselt, J.-P. Crocombette. arXiv:1111.6455 [cond-mat.mtrl-sci]. 2011 14: 49: 13.

Google Scholar

[5] A. Mainwood. Properties of Crystalline Silicon. 15, 110 (1999).

Google Scholar

[6] H. Mehrer. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. – Springer Science & Business Media, (2007).

Google Scholar

[7] Sc.W.Jones. Diffusion in Silicon. IC Knowledge LLC, April 25, 2008, 68 pages.

Google Scholar

[8] L. Dobaczewski, K. Bonde Niel Sen , K. Goscinski, O. Andersen. ACTA PHYS. POL. A. 98, 231 (2000).

Google Scholar

[9] M. Stavola. The 5th International Symposium on Advanced Science and Technology of Silicon Materials (JSPS Si Symposium), Nov. 10-14, pp.337-343( 2008), Kona, Hawaii, USA.

Google Scholar

[10] V.M. Pinchuk, A. N. Nazarov, V. S. Lysenko, V. M. Kovalev. J. Struct. Chem. 37, 18 (1996).

Google Scholar

[11] C.P. Flynn and A. M. Stoneham. Phys. Rev. B 1, 3966 (1970).

Google Scholar

[12] A.M. Stoneham. J. Nucl.Materials.69&70,109-116 (1978).

Google Scholar

[13] A.M. Stoneham, C. P. Flynn. J. Phys. F: Metal. Phys. 3,505-512 (1973).

Google Scholar

[14] A.T. Paxton, I. H. Katzarov. Acta Materialia 103, 71 (2016).

Google Scholar

[15] K.M. Forsythe, N. Makri. J. Chem. Phys. 108, 6819 (1998).

Google Scholar

[16] E. Matsushita, T. Matsubara, Progr. Theor. Phys, 67, 1( 1982).

Google Scholar

[17] D.R. Evans. Notes for Microelectronics Fabrication I. 242 Pages. FreeBookCentre.net.

Google Scholar

[18] A. Mainwood, A. M. Stoneham. J. Phys. C: Solid State Phys., 17, 2513 (1984).

Google Scholar

[19] E.V. Kalashnikov, I.N. Tolstikhin, B.Z. Pevzner. J. Phys. Solid State, 52, 1372 (2010).

Google Scholar

[20] E.V. Kalashnikov, I.N. Tolstikhin, N.A. Krylova. Defect and Diffusion Forum. 380, pp.98-106 (2017).

DOI: 10.4028/www.scientific.net/ddf.380.98

Google Scholar

[21] Ya. Frenkel, T.Kontorova. Zh. Exp. Teor. Fiz. 8,89 (1938). (In Russion).

Google Scholar

[22] Cuevas, J, Sanchez-Rey, B, Eilbeck, JC and Russell. Discrete and Continuous Dynamical Systems - Series S, 4, 1057(2011). https://doi.org/10.3934/dcdss.2011.4.1057.

Google Scholar