[1]
N. Ali, J.A. Teixeira, A. Addali, A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties, J. Nanomater., 2018 (2018) 33 pages, Article ID 6978130.
DOI: 10.1155/2018/6978130
Google Scholar
[2]
M.S. Kamel, O. Al-Oran, F. Lezsovits, Thermal conductivity of Al2O3 and CeO2 nanoparticles and their hybrid based water nanofluids: An experimental study, Period. Polytech. Chem. Eng., 65 (2020) 50–60.
DOI: 10.3311/ppch.15382
Google Scholar
[3]
S. Chakraborty, P.K. Panigrahi, Stability of nanofluid: A review, Appl. Therm. Eng., 174 (2020) 115259.
Google Scholar
[4]
F.R. Siddiqui, C.Y. Tso, K.C. Chan, S.C. Fu, C.Y.H. Chao, On trade-off for dispersion stability and thermal transport of Cu-Al2O3 hybrid nanofluid for various mixing ratios, Int. J. Heat Mass Transf., 132 (2019) 1200–1216.
DOI: 10.1016/j.ijheatmasstransfer.2018.12.094
Google Scholar
[5]
R. Sadeghi, S.G. Etemad, E. Keshavarzi, M. Haghshenasfard, Investigation of alumina nanofluid stability by UV–vis spectrum, Microfluid. Nanofluidics, 18 (2015) 1023–1030.
DOI: 10.1007/s10404-014-1491-y
Google Scholar
[6]
H.W. Xian, N.A.C. Sidik, R. Saidur, Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids, Int. Commun. Heat Mass Transf., 110 (2020) 104389.
DOI: 10.1016/j.icheatmasstransfer.2019.104389
Google Scholar
[7]
B. Munkhbayar, M. Bat-Erdene, B. Ochirkhuyag, D. Sarangerel, B. Battsengel, H. Chung, H. Jeong, An experimental study of the planetary ball milling effect on dispersibility and thermal conductivity of MWCNTs-based aqueous nanofluids, Mater. Res. Bull., 47 (2012) 4187–4196.
DOI: 10.1016/j.materresbull.2012.08.073
Google Scholar
[8]
F.S. Shariatmadar, S.G. Pakdehi, Effect of various surfactants on the stability time of kerosene-boron nanofluids, Micro Nano Lett., 11 (2016) 498–502.
DOI: 10.1049/mnl.2016.0223
Google Scholar
[9]
R. Saboori, R. Azin, S. Osfouri, S. Sabbaghi, A. Bahramian, Stability of alumina nanofluid in water/methanol base fluid in the presence of different salts, J. Nanofluids, 7 (2018) 235–245.
DOI: 10.1166/jon.2018.1448
Google Scholar
[10]
S. Umar, F. Sulaiman, N. Abdullah, S.N. Mohamad, Investigation of the effect of pH adjustment on the stability of nanofluid, AIP Conf. Proc., 2031 (2018) 020031.
DOI: 10.1063/1.5066987
Google Scholar
[11]
O. Gulzar, A. Qayoum, R. Gupta, Experimental study on stability and rheological behaviour of hybrid Al2O3-TiO2 Therminol-55 nanofluids for concentrating solar collectors, Powder Technol., 352 (2019) 436–444.
DOI: 10.1016/j.powtec.2019.04.060
Google Scholar
[12]
G.M. Moldoveanu, A.A. Minea, G. Huminic, A. Huminic, Al2O3/TiO2 hybrid nanofluids thermal conductivity: An experimental approach, J. Therm. Anal. Calorim., 137 (2019) 583–592.
DOI: 10.1007/s10973-018-7974-4
Google Scholar
[13]
H. Ismail, M.Z. Sulaiman, M.A.H. Aizzat, Qualitative investigations on the stability of Al2O3-SiO2 hybrid water-based nanofluids, IOP Conf. Ser. Mater. Sci. Eng., 788 (2020) 012091.
DOI: 10.1088/1757-899x/788/1/012091
Google Scholar
[14]
A.I. Ramadhan, W.H. Azmi, R. Mamat, K.A. Hamid, S. Norsakinah, Investigation on stability of tri-hybrid nanofluids in water-ethylene glycol mixture, IOP Conf. Ser. Mater. Sci. Eng., 469 (2019) 012068.
DOI: 10.1088/1757-899x/469/1/012068
Google Scholar
[15]
I. Wole-osho, E.C. Okonkwo, D. Kavaz, S. Abbasoglu, An experimental investigation into the effect of particle mixture ratio on speci fi c heat capacity and dynamic viscosity of Al2O3 -ZnO hybrid nano fl uids, Powder Technol., 363 (2020) 699–716.
DOI: 10.1016/j.powtec.2020.01.015
Google Scholar
[16]
M. Hemmat Esfe, S. Saedodin, W.M. Yan, M. Afrand, N. Sina, Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles, J. Therm. Anal. Calorim., 124 (2016) 455–460.
DOI: 10.1007/s10973-015-5104-0
Google Scholar
[17]
R. Pecora, Dynamic light scattering measurement of nanometer particles in liquids, J. Nanoparticle Res., 2 (2000) 123–131.
Google Scholar
[18]
M.R. Esfahani, E.M. Languri, M.R. Nunna, Effect of particle size and viscosity on thermal conductivity enhancement of graphene oxide nanofluid, Int. Commun. Heat Mass Transf., 76 (2016) 308–315.
DOI: 10.1016/j.icheatmasstransfer.2016.06.006
Google Scholar
[19]
D. Song, Y. Wang, D. Jing, J. Geng, Investigation and prediction of optical properties of alumina nanofluids with different aggregation properties, Int. J. Heat Mass Transf., 96 (2016) 430–437.
DOI: 10.1016/j.ijheatmasstransfer.2016.01.049
Google Scholar
[20]
S.O. Giwa, M. Sharifpur, J.P. Meyer, Experimental study of thermo-convection performance of hybrid nanofluids of Al2O3 -MWCNT / water in a differentially heated square cavity, Int. J. Heat Mass Transf., (2019) 119072.
DOI: 10.1016/j.ijheatmasstransfer.2019.119072
Google Scholar
[21]
S.K. Das, S.U.S. Choi, H.E. Patel, Heat transfer in nanofluids - A review, Heat Transf. Eng., 27 (2006) 3–19.
Google Scholar
[22]
A.K. Tiwari, N.S. Pandya, Z. Said, H.F. Öztop, N. Abu-Hamdeh, 4S consideration (synthesis, sonication, surfactant, stability) for the thermal conductivity of CeO2 with MWCNT and water based hybrid nanofluid: An experimental assessment, Colloids Surfaces A Physicochem. Eng. Asp., 610 (2021) 125918.
DOI: 10.1016/j.colsurfa.2020.125918
Google Scholar
[23]
H. Zhu, C. Zhang, Y. Tang, J. Wang, Y. Yin, Preparation and thermal conductivity of suspensions of graphite nanoparticles, Carbon N. Y., 45 (2007) 226–228.
DOI: 10.1016/j.carbon.2006.07.005
Google Scholar
[24]
C.J. Walleck, M.M. Kostic, Development of steady-state, parallel-plate thermal conductivity apparatus for poly-nanofluids and comparative measurements with transient hwtc apparatus, Northern Illinois University, (2009).
DOI: 10.1115/imece2010-38187
Google Scholar
[25]
M.J. Assael, I.N. Metaxa, J. Arvanitidis, D. Christophilos, C. Lioutas, Thermal Conductivity Enhancement in Aqueous Suspensions of Carbon Multi-Walled and Double-Walled Nanotubes in the Presence of Two Different Dispersants, Int. J. Thermophys., 26 (2005) 647–664.
DOI: 10.1007/s10765-005-5569-3
Google Scholar
[26]
M.N. Pantzali, A.A. Mouza, S.V. Paras,. Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE). Chemical Engineering Science, 64(14), (2009) 3290-3300.
DOI: 10.1016/j.ces.2009.04.004
Google Scholar
[27]
L. Fedele, Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles, Int. J. Refrig., 35 (2012) 1359–1366.
DOI: 10.1016/j.ijrefrig.2012.03.012
Google Scholar
[28]
S.K. Brar, M. Verma, Measurement of nanoparticles by light-scattering techniques, TrAC - Trends Anal. Chem., 30 (2011) 4–17.
DOI: 10.1016/j.trac.2010.08.008
Google Scholar
[29]
S. Falke, C. Betzel, Dynamic Light Scattering (DLS), Springer International Publishing, (2019).
Google Scholar
[30]
F. Babick, Dynamic light scattering (DLS), Elsevier Inc., (2019).
Google Scholar
[31]
S.W. Provencher, P. Štěpánek, Global analysis of dynamic light scattering autocorrelation functions, Part. Part. Syst. Charact., 13 (1996) 291–294.
DOI: 10.1002/ppsc.19960130507
Google Scholar
[32]
A. Ghadimi, R. Saidur, H.S.C. Metselaar, A review of nanofluid stability properties and characterization in stationary conditions, Int. J. Heat Mass Transf., 54 (2011) 4051–4068.
DOI: 10.1016/j.ijheatmasstransfer.2011.04.014
Google Scholar
[33]
K. Lee, Y. Hwang, S. Cheong, L. Kwon, S. Kim, J. Lee, Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil, Curr. Appl. Phys., 9 (2009) e128–e131.
DOI: 10.1016/j.cap.2008.12.054
Google Scholar
[34]
W. Safiei, M.M. Rahman, A.R. Yusoff, M.R. Radin, Preparation, stability and wettability of nanofluid: A review, J. Mech. Eng. Sci., 14 (2020) 7244–7257.
DOI: 10.15282/jmes.14.3.2020.24.0569
Google Scholar
[35]
L. Wang, M. Quintard, Nanofluids of the Future, (2009) 179–243.
Google Scholar
[36]
W. Ahmed, S.N. Kazi, Z.Z. Chowdhury, M.R. Bin Johan, M.E.M. Soudagar, M.A. Mujtaba, M. Gul, I.A. Badruddin, S. Kamangar, Ultrasonic assisted new Al2O3@TiO2-ZnO/DW ternary composites nanofluids for enhanced energy transportation in a closed horizontal circular flow passage, Int. Commun. Heat Mass Transf., 120 (2021) 105018.
DOI: 10.1016/j.icheatmasstransfer.2020.105018
Google Scholar
[37]
I. Wole-Osho, E.C. Okonkwo, D. Kavaz, S. Abbasoğlu, Energy, Exergy, and Economic Investigation of the Effect of Nanoparticle Mixture Ratios on the Thermal Performance of Flat Plate Collectors Using Al2O3–ZnO Hybrid Nanofluid, J. Energy Eng., 147 (2021) 04020083.
DOI: 10.1061/(asce)ey.1943-7897.0000733
Google Scholar
[38]
N. Navarrete, L. Hernández, A. Vela, R. Mondragón, Influence of the production method on the thermophysical properties of high temperature molten salt-based nanofluids, J. Mol. Liq., 302 (2020) 112570.
DOI: 10.1016/j.molliq.2020.112570
Google Scholar
[39]
M.S. Saterlie, H. Sahin, B. Kavlicoglu, Y. Liu, O.A. Graeve, Surfactant Effects on Dispersion Characteristics of Copper-Based Nanofluids: A Dynamic Light Scattering Study, Chem. Mater., (2012).
DOI: 10.1021/cm203853f
Google Scholar
[40]
W. Cui, Z. Shen, J. Yang, S. Wu, Molecular dynamics simulation on the microstructure of absorption layer at the liquid-solid interface in nanofluids, Int. Commun. Heat Mass Transf., 71 (2016) 75–85.
DOI: 10.1016/j.icheatmasstransfer.2015.12.023
Google Scholar
[41]
L. Xue, P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, Effect of liquid layering at the liquid-solid interface on thermal transport, Int. J. Heat Mass Transf., 47 (2004) 4277–4284.
DOI: 10.1016/j.ijheatmasstransfer.2004.05.016
Google Scholar
[42]
M.. Zawrah, R.. Khattab, L.. Girgis, H. El Daidamony, Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications, HBRC J., 12(3) (2016) 227–234.
DOI: 10.1016/j.hbrcj.2014.12.001
Google Scholar
[43]
K.G.K. Sarojini, S. V. Manoj, P.K. Singh, T. Pradeep, S.K. Das, Electrical conductivity of ceramic and metallic nanofluids, Colloids Surfaces A Physicochem. Eng. Asp., 417 (2013) 39–46.
DOI: 10.1016/j.colsurfa.2012.10.010
Google Scholar
[44]
A.A. Minea, R.S. Luciu, Investigations on electrical conductivity of stabilized water based Al2O3 nanofluids, Microfluid. Nanofluidics, 13 (2012) 977–985.
DOI: 10.1007/s10404-012-1017-4
Google Scholar
[45]
H. Konakanchi, R. Vajjha, D. Misra, D. Das, Electrical conductivity measurements of nanofluids and development of new correlations, J. Nanosci. Nanotechnol., 11(8) (2011) 6788–6795.
DOI: 10.1166/jnn.2011.4217
Google Scholar
[46]
A.A. Minea, A Review on Electrical Conductivity of Nanoparticle-Enhanced Fluids, Nanomaterials, 9 (2019) 1592.
DOI: 10.3390/nano9111592
Google Scholar