Investigation into the Size Distribution of Al2O3- ZnO Nanoparticles Dispersed in DI Water and Following the Impact of CNTs on the Stability, Heat Transfer, and Electricity Transfer of Al2O3- ZnO-CNT Hybrid Nanofluid

Article Preview

Abstract:

The stability of dispersed nanoparticles in the base fluid has always been one of the most important challenges in using nanofluids as a coolant in heat transfer applications in different industries such as modern electronic equipment, heat exchangers, solar technologies, etc. In the present study, the dynamic light scattering (DLS) method is used to obtain the particle size distribution of Al2O3-ZnO dispersed in DI water. After adjusting the optical arrangement and designing the DLS setup, the correlation curves are plotted by analyzing the detected signals of the experiments. Then, a decay rate is derived by fitting an exponential function to the correlation curve to get the particle size distribution by using the Stoke-Einstein equation. In order to investigate the stability of Al2O3-ZnO water-based nanofluid, the particle size distribution profiles are studied several times. In addition, the stability of Al2O3-ZnO-CNT hybrid nanofluid is followed by absorbance measurements using a UV-Vis spectrophotometer. Moreover, the thermal conductivity coefficient and electrical conductivity of the Al2O3-ZnO hybrid nanofluid with and without CNT particles are determined by utilizing KD2 Pro and PCT-407 devices, respectively. The results showed that the peak in the particle size distribution curve for Al2O3-ZnO hybrid nanofluid shifted from 476 nm to 128 nm after 5 days. Furthermore, the inclusion of carbon nanotubes increased the stability of zinc oxide particles in the nanofluid. In addition, by adding carbon nanotubes in a ratio of 1:1:0.5 to Al2O3-ZnO nanofluid and forming 0.05 wt.% hybrid nanofluid, the thermal conductivity coefficient was enhanced by 30% in comparison with deionized water, while a 0.05 wt.% hybrid nanofluid without CNT particles improved the thermal conductivity by 19%. Although the electrical conductivity increased by adding nanoparticles to the base fluid, it didn’t change significantly for nanofluids containing CNTs compared to nanofluids without CNT particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

172-192

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Ali, J.A. Teixeira, A. Addali, A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties, J. Nanomater., 2018 (2018) 33 pages, Article ID 6978130.

DOI: 10.1155/2018/6978130

Google Scholar

[2] M.S. Kamel, O. Al-Oran, F. Lezsovits, Thermal conductivity of Al2O3 and CeO2 nanoparticles and their hybrid based water nanofluids: An experimental study, Period. Polytech. Chem. Eng., 65 (2020) 50–60.

DOI: 10.3311/ppch.15382

Google Scholar

[3] S. Chakraborty, P.K. Panigrahi, Stability of nanofluid: A review, Appl. Therm. Eng., 174 (2020) 115259.

Google Scholar

[4] F.R. Siddiqui, C.Y. Tso, K.C. Chan, S.C. Fu, C.Y.H. Chao, On trade-off for dispersion stability and thermal transport of Cu-Al2O3 hybrid nanofluid for various mixing ratios, Int. J. Heat Mass Transf., 132 (2019) 1200–1216.

DOI: 10.1016/j.ijheatmasstransfer.2018.12.094

Google Scholar

[5] R. Sadeghi, S.G. Etemad, E. Keshavarzi, M. Haghshenasfard, Investigation of alumina nanofluid stability by UV–vis spectrum, Microfluid. Nanofluidics, 18 (2015) 1023–1030.

DOI: 10.1007/s10404-014-1491-y

Google Scholar

[6] H.W. Xian, N.A.C. Sidik, R. Saidur, Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids, Int. Commun. Heat Mass Transf., 110 (2020) 104389.

DOI: 10.1016/j.icheatmasstransfer.2019.104389

Google Scholar

[7] B. Munkhbayar, M. Bat-Erdene, B. Ochirkhuyag, D. Sarangerel, B. Battsengel, H. Chung, H. Jeong, An experimental study of the planetary ball milling effect on dispersibility and thermal conductivity of MWCNTs-based aqueous nanofluids, Mater. Res. Bull., 47 (2012) 4187–4196.

DOI: 10.1016/j.materresbull.2012.08.073

Google Scholar

[8] F.S. Shariatmadar, S.G. Pakdehi, Effect of various surfactants on the stability time of kerosene-boron nanofluids, Micro Nano Lett., 11 (2016) 498–502.

DOI: 10.1049/mnl.2016.0223

Google Scholar

[9] R. Saboori, R. Azin, S. Osfouri, S. Sabbaghi, A. Bahramian, Stability of alumina nanofluid in water/methanol base fluid in the presence of different salts, J. Nanofluids, 7 (2018) 235–245.

DOI: 10.1166/jon.2018.1448

Google Scholar

[10] S. Umar, F. Sulaiman, N. Abdullah, S.N. Mohamad, Investigation of the effect of pH adjustment on the stability of nanofluid, AIP Conf. Proc., 2031 (2018) 020031.

DOI: 10.1063/1.5066987

Google Scholar

[11] O. Gulzar, A. Qayoum, R. Gupta, Experimental study on stability and rheological behaviour of hybrid Al2O3-TiO2 Therminol-55 nanofluids for concentrating solar collectors, Powder Technol., 352 (2019) 436–444.

DOI: 10.1016/j.powtec.2019.04.060

Google Scholar

[12] G.M. Moldoveanu, A.A. Minea, G. Huminic, A. Huminic, Al2O3/TiO2 hybrid nanofluids thermal conductivity: An experimental approach, J. Therm. Anal. Calorim., 137 (2019) 583–592.

DOI: 10.1007/s10973-018-7974-4

Google Scholar

[13] H. Ismail, M.Z. Sulaiman, M.A.H. Aizzat, Qualitative investigations on the stability of Al2O3-SiO2 hybrid water-based nanofluids, IOP Conf. Ser. Mater. Sci. Eng., 788 (2020) 012091.

DOI: 10.1088/1757-899x/788/1/012091

Google Scholar

[14] A.I. Ramadhan, W.H. Azmi, R. Mamat, K.A. Hamid, S. Norsakinah, Investigation on stability of tri-hybrid nanofluids in water-ethylene glycol mixture, IOP Conf. Ser. Mater. Sci. Eng., 469 (2019) 012068.

DOI: 10.1088/1757-899x/469/1/012068

Google Scholar

[15] I. Wole-osho, E.C. Okonkwo, D. Kavaz, S. Abbasoglu, An experimental investigation into the effect of particle mixture ratio on speci fi c heat capacity and dynamic viscosity of Al2O3 -ZnO hybrid nano fl uids, Powder Technol., 363 (2020) 699–716.

DOI: 10.1016/j.powtec.2020.01.015

Google Scholar

[16] M. Hemmat Esfe, S. Saedodin, W.M. Yan, M. Afrand, N. Sina, Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles, J. Therm. Anal. Calorim., 124 (2016) 455–460.

DOI: 10.1007/s10973-015-5104-0

Google Scholar

[17] R. Pecora, Dynamic light scattering measurement of nanometer particles in liquids, J. Nanoparticle Res., 2 (2000) 123–131.

Google Scholar

[18] M.R. Esfahani, E.M. Languri, M.R. Nunna, Effect of particle size and viscosity on thermal conductivity enhancement of graphene oxide nanofluid, Int. Commun. Heat Mass Transf., 76 (2016) 308–315.

DOI: 10.1016/j.icheatmasstransfer.2016.06.006

Google Scholar

[19] D. Song, Y. Wang, D. Jing, J. Geng, Investigation and prediction of optical properties of alumina nanofluids with different aggregation properties, Int. J. Heat Mass Transf., 96 (2016) 430–437.

DOI: 10.1016/j.ijheatmasstransfer.2016.01.049

Google Scholar

[20] S.O. Giwa, M. Sharifpur, J.P. Meyer, Experimental study of thermo-convection performance of hybrid nanofluids of Al2O3 -MWCNT / water in a differentially heated square cavity, Int. J. Heat Mass Transf., (2019) 119072.

DOI: 10.1016/j.ijheatmasstransfer.2019.119072

Google Scholar

[21] S.K. Das, S.U.S. Choi, H.E. Patel, Heat transfer in nanofluids - A review, Heat Transf. Eng., 27 (2006) 3–19.

Google Scholar

[22] A.K. Tiwari, N.S. Pandya, Z. Said, H.F. Öztop, N. Abu-Hamdeh, 4S consideration (synthesis, sonication, surfactant, stability) for the thermal conductivity of CeO2 with MWCNT and water based hybrid nanofluid: An experimental assessment, Colloids Surfaces A Physicochem. Eng. Asp., 610 (2021) 125918.

DOI: 10.1016/j.colsurfa.2020.125918

Google Scholar

[23] H. Zhu, C. Zhang, Y. Tang, J. Wang, Y. Yin, Preparation and thermal conductivity of suspensions of graphite nanoparticles, Carbon N. Y., 45 (2007) 226–228.

DOI: 10.1016/j.carbon.2006.07.005

Google Scholar

[24] C.J. Walleck, M.M. Kostic, Development of steady-state, parallel-plate thermal conductivity apparatus for poly-nanofluids and comparative measurements with transient hwtc apparatus, Northern Illinois University, (2009).

DOI: 10.1115/imece2010-38187

Google Scholar

[25] M.J. Assael, I.N. Metaxa, J. Arvanitidis, D. Christophilos, C. Lioutas, Thermal Conductivity Enhancement in Aqueous Suspensions of Carbon Multi-Walled and Double-Walled Nanotubes in the Presence of Two Different Dispersants, Int. J. Thermophys., 26 (2005) 647–664.

DOI: 10.1007/s10765-005-5569-3

Google Scholar

[26] M.N. Pantzali, A.A. Mouza, S.V. Paras,. Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE). Chemical Engineering Science, 64(14), (2009) 3290-3300.

DOI: 10.1016/j.ces.2009.04.004

Google Scholar

[27] L. Fedele, Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles, Int. J. Refrig., 35 (2012) 1359–1366.

DOI: 10.1016/j.ijrefrig.2012.03.012

Google Scholar

[28] S.K. Brar, M. Verma, Measurement of nanoparticles by light-scattering techniques, TrAC - Trends Anal. Chem., 30 (2011) 4–17.

DOI: 10.1016/j.trac.2010.08.008

Google Scholar

[29] S. Falke, C. Betzel, Dynamic Light Scattering (DLS), Springer International Publishing, (2019).

Google Scholar

[30] F. Babick, Dynamic light scattering (DLS), Elsevier Inc., (2019).

Google Scholar

[31] S.W. Provencher, P. Štěpánek, Global analysis of dynamic light scattering autocorrelation functions, Part. Part. Syst. Charact., 13 (1996) 291–294.

DOI: 10.1002/ppsc.19960130507

Google Scholar

[32] A. Ghadimi, R. Saidur, H.S.C. Metselaar, A review of nanofluid stability properties and characterization in stationary conditions, Int. J. Heat Mass Transf., 54 (2011) 4051–4068.

DOI: 10.1016/j.ijheatmasstransfer.2011.04.014

Google Scholar

[33] K. Lee, Y. Hwang, S. Cheong, L. Kwon, S. Kim, J. Lee, Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil, Curr. Appl. Phys., 9 (2009) e128–e131.

DOI: 10.1016/j.cap.2008.12.054

Google Scholar

[34] W. Safiei, M.M. Rahman, A.R. Yusoff, M.R. Radin, Preparation, stability and wettability of nanofluid: A review, J. Mech. Eng. Sci., 14 (2020) 7244–7257.

DOI: 10.15282/jmes.14.3.2020.24.0569

Google Scholar

[35] L. Wang, M. Quintard, Nanofluids of the Future, (2009) 179–243.

Google Scholar

[36] W. Ahmed, S.N. Kazi, Z.Z. Chowdhury, M.R. Bin Johan, M.E.M. Soudagar, M.A. Mujtaba, M. Gul, I.A. Badruddin, S. Kamangar, Ultrasonic assisted new Al2O3@TiO2-ZnO/DW ternary composites nanofluids for enhanced energy transportation in a closed horizontal circular flow passage, Int. Commun. Heat Mass Transf., 120 (2021) 105018.

DOI: 10.1016/j.icheatmasstransfer.2020.105018

Google Scholar

[37] I. Wole-Osho, E.C. Okonkwo, D. Kavaz, S. Abbasoğlu, Energy, Exergy, and Economic Investigation of the Effect of Nanoparticle Mixture Ratios on the Thermal Performance of Flat Plate Collectors Using Al2O3–ZnO Hybrid Nanofluid, J. Energy Eng., 147 (2021) 04020083.

DOI: 10.1061/(asce)ey.1943-7897.0000733

Google Scholar

[38] N. Navarrete, L. Hernández, A. Vela, R. Mondragón, Influence of the production method on the thermophysical properties of high temperature molten salt-based nanofluids, J. Mol. Liq., 302 (2020) 112570.

DOI: 10.1016/j.molliq.2020.112570

Google Scholar

[39] M.S. Saterlie, H. Sahin, B. Kavlicoglu, Y. Liu, O.A. Graeve, Surfactant Effects on Dispersion Characteristics of Copper-Based Nanofluids: A Dynamic Light Scattering Study, Chem. Mater., (2012).

DOI: 10.1021/cm203853f

Google Scholar

[40] W. Cui, Z. Shen, J. Yang, S. Wu, Molecular dynamics simulation on the microstructure of absorption layer at the liquid-solid interface in nanofluids, Int. Commun. Heat Mass Transf., 71 (2016) 75–85.

DOI: 10.1016/j.icheatmasstransfer.2015.12.023

Google Scholar

[41] L. Xue, P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, Effect of liquid layering at the liquid-solid interface on thermal transport, Int. J. Heat Mass Transf., 47 (2004) 4277–4284.

DOI: 10.1016/j.ijheatmasstransfer.2004.05.016

Google Scholar

[42] M.. Zawrah, R.. Khattab, L.. Girgis, H. El Daidamony, Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications, HBRC J., 12(3) (2016) 227–234.

DOI: 10.1016/j.hbrcj.2014.12.001

Google Scholar

[43] K.G.K. Sarojini, S. V. Manoj, P.K. Singh, T. Pradeep, S.K. Das, Electrical conductivity of ceramic and metallic nanofluids, Colloids Surfaces A Physicochem. Eng. Asp., 417 (2013) 39–46.

DOI: 10.1016/j.colsurfa.2012.10.010

Google Scholar

[44] A.A. Minea, R.S. Luciu, Investigations on electrical conductivity of stabilized water based Al2O3 nanofluids, Microfluid. Nanofluidics, 13 (2012) 977–985.

DOI: 10.1007/s10404-012-1017-4

Google Scholar

[45] H. Konakanchi, R. Vajjha, D. Misra, D. Das, Electrical conductivity measurements of nanofluids and development of new correlations, J. Nanosci. Nanotechnol., 11(8) (2011) 6788–6795.

DOI: 10.1166/jnn.2011.4217

Google Scholar

[46] A.A. Minea, A Review on Electrical Conductivity of Nanoparticle-Enhanced Fluids, Nanomaterials, 9 (2019) 1592.

DOI: 10.3390/nano9111592

Google Scholar