[1]
N. L. Peterson, Isotope Effects in Diffusion,, in: Diffusion in Solids. Recent Developments, Eds A.S. Nowick and J.J. Burton, Academic Press, 1975, New York, San Francisco, London.
Google Scholar
[2]
P. Kuhn, and J. Horbach, F. Kargl, A. Meyer and Th. Voigtmann, (2014) Diffusion and interdiffusion in binary metallic melts,, Physical Review B, 90, 024309.
DOI: 10.1103/physrevb.90.024309
Google Scholar
[3]
E. Sondermann, F. Kargl and A. Meyer, (2016) Influence of cross correlations on interdiffusion in Al-rich Al-Ni melts. Physical Review B, 93 (18), p.184201.
DOI: 10.1103/physrevb.93.184201
Google Scholar
[4]
H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Vol. 155 of Springer Series in Solid-State Sciences, 2007, Springer Science & Business Media, Berlin Heidelberg.
DOI: 10.1007/978-3-540-71488-0
Google Scholar
[5]
U. Sarder, A. V. Evteev, E. V. Levchenko, A. Kromik, I. V. Belova, and G. E. Murch, Molecular Dynamics Study of Mass Transport Properties of Liquid Cu-Ag Alloys,, Diffusion Foundations, vol. 9, pp.58-72, (2016).
DOI: 10.4028/www.scientific.net/df.9.58
Google Scholar
[6]
U. Sarder, Modelling of Thermotransport in Engineering Materials,, PhD Dissertation, Mechanical Engineering, University of Newcastle, (2019).
Google Scholar
[7]
R. J. Bearman and D. L. Jolly, Mass dependence of the self diffusion coefficients in two equimolar binary liquid Lennard-Jones systems determined through molecular dynamics simulation,, Molecular Physics, vol. 44, no. 3, pp.665-675, (1981).
DOI: 10.1080/00268978100102711
Google Scholar
[8]
R. J. Bearman and D. L. Jolly, Molecular dynamics simulations of self-diffusion coefficients in binary isotopic Lennard-Jones solutions: Comparison with experimental data on isotope effects in benzene diffusion,, Molecular Physics, vol. 52, no. 2, pp.447-460, (1984).
DOI: 10.1080/00268978400101321
Google Scholar
[9]
I. Ebbsjo, I. Waller, P. Schofield, and K. Skold, Diffusion in liquid mixtures of isotopes,, Journal of Physics C: Solid State Physics, vol. 7, no. 21, p.3891, (1974).
DOI: 10.1088/0022-3719/7/21/011
Google Scholar
[10]
N. Kiriushcheva and S. V. Kuzmin, Influence of mass difference on dynamic properties of isotope mixtures,, Physica A: Statistical Mechanics and its Applications, vol. 352, no. 2-4, pp.509-521, (2005).
DOI: 10.1016/j.physa.2005.01.010
Google Scholar
[11]
B. J. Alder, W. E. Alley, and J. H. Dymond, Studies in molecular dynamics. XIV. Mass and size dependence of the binary diffusion coefficient,, The Journal of Chemical Physics, vol. 61, no. 4, pp.1415-1420, (1974).
DOI: 10.1063/1.1682067
Google Scholar
[12]
U. Sarder, T. Ahmed, W.Y. Wang, R. Kozubski, Z.-K. Liu, I.V. Belova, and G.E. Murch, Mass and thermal transport in liquid Cu-Ag alloys,, Philosophical Magazine, 99, pp.1-24, (2018).
DOI: 10.1080/14786435.2018.1546958
Google Scholar
[13]
U. Sarder, T. R. Paul, I. V. Belova, and G. E. Murch, The diffusion isotope effect and diffusion mechanism in liquid Cu-ag and Cu-Ni alloys, Defect Diff. Forum 413:136-145 (2021).
DOI: 10.4028/www.scientific.net/ddf.413.136
Google Scholar
[14]
I. V. Belova, T. Ahmed, U. Sarder, W. Y. Wang, R. Kozubski, Z.-K. Liu, D. Holland-Moritz, A. Meyer, and G. E. Murch, Computer simulation of thermodynamic factors in Ni-Al and Cu-Ag liquid alloys,, Computational Materials Science, vol. 166, pp.124-135, (2019).
DOI: 10.1016/j.commatsci.2019.04.048
Google Scholar
[15]
J. R. Manning, Correlation factors for diffusion in nondilute alloys, Physical Review B, 4, p.1111, (1971).
Google Scholar
[16]
J. R. Manning, Diffusion in a chemical concentration gradient, Phys. Rev. 124, 470 (1961).
Google Scholar
[17]
I V Belova and G E Murch, Philosophical Magazine A, 81, pp.1749-1758 (2001).
Google Scholar
[18]
I V Belova and G E Murch, The Six-Jump Cycle Mechanism in Intermetallics: the Vacancy Wind Factor, Def. Diff. Forum, 213/215, pp.95-106 (2003).
DOI: 10.4028/www.scientific.net/ddf.213-215.95
Google Scholar
[19]
I V Belova and G E Murch, Interdiffusion in Intermetallics, Metallurgical and Materials Transactions A, 44, pp.4417-4421 (2013).
DOI: 10.1007/s11661-013-1853-1
Google Scholar
[20]
G E Murch and I V Belova, Tracer Correlation, Collective Correlation and Vacancy-Wind Factors in Intermetallic Compounds Taking the B2 Structure, Def. Diff. Forum, 179, pp.1-16 (2000).
DOI: 10.4028/www.scientific.net/ddf.179-180.1
Google Scholar
[21]
B. Zhang, A. Griesche, and A. Meyer. Diffusion in al-cu melts studied by time-resolved x-ray radiography. Physical review letters, 104(3):35902, (2010).
DOI: 10.1103/physrevlett.104.035902
Google Scholar
[22]
A. Meyer, S. Stüber, D. Holland-Moritz, O. Heinen, and T. Unruh. Determination of self-diffusion coefficients by quasielastic neutron scattering measurements of levitated ni droplets. Phys. Rev. B, 77:092201, (2008).
DOI: 10.1103/physrevb.77.092201
Google Scholar
[23]
S. K. Das, J. Horbach, M. M. Koza, S. Mavila Chatoth, and A. Meyer. Influence of chemical short-range order on atomic diffusion in Al–Ni melts. Appl. Phys. Lett., 86(1):011918, (2005).
DOI: 10.1063/1.1845590
Google Scholar
[24]
S. Stüber, D. Holland-Moritz, T. Unruh, and A. Meyer. Ni self-diffusion in refractory al-ni melts. Phys. Rev. B, 81:024204, (2010).
DOI: 10.1103/physrevb.81.024204
Google Scholar
[25]
P. Kuhn, J. Horbach, F. Kargl, A. Meyer, and Th. Voigtmann. Diffusion and interdiffusion in binary metallic melts. Phys. Rev. B, 90:024309, (2014).
DOI: 10.1103/physrevb.90.024309
Google Scholar
[26]
A. Meyer and F. Kargl. Diffusion of mass in liquid metals and alloys - recent experimental development and new perspectives. Int. J. Microgravity Sci. Appl., 30(1):30–35, (2013).
Google Scholar
[27]
F. Kargl, M. Engelhardt, F. Yang, H. Weis, P. Schmakat, B. Schillinger, A. Griesche, and A. Meyer. In situ studies of mass transport in liquid alloys by means of neutron radiography. Journal of Physics: Condensed Matter, 23(25):254201, (2011).
DOI: 10.1088/0953-8984/23/25/254201
Google Scholar
[28]
F. Kargl, H. Weis, T. Unruh, and A. Meyer. Self diffusion in liquid aluminium. J. Phys. Conf. Ser., 340(1):012077, (2012).
DOI: 10.1088/1742-6596/340/1/012077
Google Scholar
[29]
J. Horbach, S. K. Das, A. Griesche, M.-P. Macht, G. Frohberg, and A. Meyer, Self-diffusion and interdiffusion in Al80Ni20 melts: Simulation and experiment, Phys Rev B 75, 174304 (2007).
DOI: 10.1103/physrevb.75.174304
Google Scholar
[30]
X.-P. Tang, Ulrich Geyer, Ralf Busch, William L. Johnson & Yue Wu, Diffusion mechanisms in metallic supercooled liquids and glasses, Nature, 402, 160-162 (1999).
DOI: 10.1038/45996
Google Scholar
[31]
F. Faupel, Diffusion in non-crystalline metallic and organic media. Phys. Status. Solidi. A 134, 9–59 (1992).
DOI: 10.1002/pssa.2211340102
Google Scholar
[32]
F.H. Stillinger, Relaxation and flow mechanisms in fragile, glass-forming liquids. J. Chem. Phys. 89, 6461–6469 (1988).
DOI: 10.1063/1.455365
Google Scholar
[33]
Kivelson,S. A., Zhao,X., Kivelson,D., Fischer,T. M. & Knobler, C. M. Frustration-limited clusters in liquids. J. Chem. Phys. 101, 2391–2397 (1994).
DOI: 10.1063/1.468414
Google Scholar
[34]
E.G.D. Cohen, P. Westerhuijs, and I.M. de Schepper, Half Width of Neutron Spectra, Phys. Rev. Lett. 59, 2872 (1987).
DOI: 10.1103/physrevlett.59.2872
Google Scholar
[35]
I.M. de Schepper, E.G.D. Cohen, and M.J. Zuilhof, The width of neutron spectra and the heat mode of fluids, Phys. Lett. 101A, 399 (1984).
DOI: 10.1016/0375-9601(84)90613-3
Google Scholar
[36]
S. Chapman, T. G. Cowling, and D. Burnett, The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases, 3rd ed. Cambridge university press, New York, (1990).
DOI: 10.2307/3609795
Google Scholar
[37]
A. H. Schoen, Correlation and the isotope effect for diffusion in crystalline solids,, Physical Review Letters, vol. 1, no. 4, p.138, (1958).
Google Scholar
[38]
H. R. Schober, Isotope effect in the diffusion of binary liquids,, Solid state communications, vol. 119, no. 2, pp.73-77, (2001).
DOI: 10.1016/s0038-1098(01)00219-8
Google Scholar
[39]
W.Y. Wang, H.Z. Fang, S.L. Shang, H.Zhang, Y.Wang, X.Hui, S.Mathaudhu, Z.K. Liu, Atomic structure and diffusivity in liquid Al80Ni20 by ab initio molecular dynamics simulations, Physica B: Condensed Matter, 406 (2011) pp.3089-3097.
DOI: 10.1016/j.physb.2011.05.013
Google Scholar
[40]
I.V Belova, T. Ahmed, U. Sarder, A.V. Evteev, E.V. Levchenko, and G. E. Murch, The Manning factor for direct exchange and ring mechanisms, Phil. Mag., 97 pp.230-247, (2017).
DOI: 10.1080/14786435.2016.1255368
Google Scholar