Diffusion: Isotope Effect and Manning Factor in Liquids

Article Preview

Abstract:

In this paper, the diffusion isotope effect and the Manning factor are investigated by means of Molecular Dynamics simulations in liquid Cu-Ag alloys. The values for the diffusion isotope effect parameter allow for the estimate of the number of atoms that are moving cooperatively in a basic diffusion event as ‘seen’ by a given (tracer) atom. On average, in the considered alloys and considered temperatures, this is limited to between 5 and 15. This is consistent with results of Molecular Dynamics simulations on the average coordination number calculations. This would suggest that, together with a given atom, a majority of the neighbouring atoms are involved in a basic diffusion event. Results for the Manning factor (MD simulation) for Cu-Ag liquid alloys are seemingly in agreement with the direct exchange mechanism where only two atoms are involved in the elementary diffusion event. This is not in apparent agreement with the isotope effect results. It was shown, however, that any ring mechanism, or, more complex, cage mechanism are, in fact, a combination of several simultaneously happening direct exchanges. Any other possible mechanisms for diffusion in liquids is most likely a combination of direct exchanges as well. It can be seen then that the collective nature of all considered mechanisms is very similar and follows the direct exchange signature properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

195-204

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. L. Peterson, Isotope Effects in Diffusion,, in: Diffusion in Solids. Recent Developments, Eds A.S. Nowick and J.J. Burton, Academic Press, 1975, New York, San Francisco, London.

Google Scholar

[2] P. Kuhn, and J. Horbach, F. Kargl, A. Meyer and Th. Voigtmann, (2014) Diffusion and interdiffusion in binary metallic melts,, Physical Review B, 90, 024309.

DOI: 10.1103/physrevb.90.024309

Google Scholar

[3] E. Sondermann, F. Kargl and A. Meyer, (2016) Influence of cross correlations on interdiffusion in Al-rich Al-Ni melts. Physical Review B, 93 (18), p.184201.

DOI: 10.1103/physrevb.93.184201

Google Scholar

[4] H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Vol. 155 of Springer Series in Solid-State Sciences, 2007, Springer Science & Business Media, Berlin Heidelberg.

DOI: 10.1007/978-3-540-71488-0

Google Scholar

[5] U. Sarder, A. V. Evteev, E. V. Levchenko, A. Kromik, I. V. Belova, and G. E. Murch, Molecular Dynamics Study of Mass Transport Properties of Liquid Cu-Ag Alloys,, Diffusion Foundations, vol. 9, pp.58-72, (2016).

DOI: 10.4028/www.scientific.net/df.9.58

Google Scholar

[6] U. Sarder, Modelling of Thermotransport in Engineering Materials,, PhD Dissertation, Mechanical Engineering, University of Newcastle, (2019).

Google Scholar

[7] R. J. Bearman and D. L. Jolly, Mass dependence of the self diffusion coefficients in two equimolar binary liquid Lennard-Jones systems determined through molecular dynamics simulation,, Molecular Physics, vol. 44, no. 3, pp.665-675, (1981).

DOI: 10.1080/00268978100102711

Google Scholar

[8] R. J. Bearman and D. L. Jolly, Molecular dynamics simulations of self-diffusion coefficients in binary isotopic Lennard-Jones solutions: Comparison with experimental data on isotope effects in benzene diffusion,, Molecular Physics, vol. 52, no. 2, pp.447-460, (1984).

DOI: 10.1080/00268978400101321

Google Scholar

[9] I. Ebbsjo, I. Waller, P. Schofield, and K. Skold, Diffusion in liquid mixtures of isotopes,, Journal of Physics C: Solid State Physics, vol. 7, no. 21, p.3891, (1974).

DOI: 10.1088/0022-3719/7/21/011

Google Scholar

[10] N. Kiriushcheva and S. V. Kuzmin, Influence of mass difference on dynamic properties of isotope mixtures,, Physica A: Statistical Mechanics and its Applications, vol. 352, no. 2-4, pp.509-521, (2005).

DOI: 10.1016/j.physa.2005.01.010

Google Scholar

[11] B. J. Alder, W. E. Alley, and J. H. Dymond, Studies in molecular dynamics. XIV. Mass and size dependence of the binary diffusion coefficient,, The Journal of Chemical Physics, vol. 61, no. 4, pp.1415-1420, (1974).

DOI: 10.1063/1.1682067

Google Scholar

[12] U. Sarder, T. Ahmed, W.Y. Wang, R. Kozubski, Z.-K. Liu, I.V. Belova, and G.E. Murch, Mass and thermal transport in liquid Cu-Ag alloys,, Philosophical Magazine, 99, pp.1-24, (2018).

DOI: 10.1080/14786435.2018.1546958

Google Scholar

[13] U. Sarder, T. R. Paul, I. V. Belova, and G. E. Murch, The diffusion isotope effect and diffusion mechanism in liquid Cu-ag and Cu-Ni alloys, Defect Diff. Forum 413:136-145 (2021).

DOI: 10.4028/www.scientific.net/ddf.413.136

Google Scholar

[14] I. V. Belova, T. Ahmed, U. Sarder, W. Y. Wang, R. Kozubski, Z.-K. Liu, D. Holland-Moritz, A. Meyer, and G. E. Murch, Computer simulation of thermodynamic factors in Ni-Al and Cu-Ag liquid alloys,, Computational Materials Science, vol. 166, pp.124-135, (2019).

DOI: 10.1016/j.commatsci.2019.04.048

Google Scholar

[15] J. R. Manning, Correlation factors for diffusion in nondilute alloys, Physical Review B, 4, p.1111, (1971).

Google Scholar

[16] J. R. Manning, Diffusion in a chemical concentration gradient, Phys. Rev. 124, 470 (1961).

Google Scholar

[17] I V Belova and G E Murch, Philosophical Magazine A, 81, pp.1749-1758 (2001).

Google Scholar

[18] I V Belova and G E Murch, The Six-Jump Cycle Mechanism in Intermetallics: the Vacancy Wind Factor, Def. Diff. Forum, 213/215, pp.95-106 (2003).

DOI: 10.4028/www.scientific.net/ddf.213-215.95

Google Scholar

[19] I V Belova and G E Murch, Interdiffusion in Intermetallics, Metallurgical and Materials Transactions A, 44, pp.4417-4421 (2013).

DOI: 10.1007/s11661-013-1853-1

Google Scholar

[20] G E Murch and I V Belova, Tracer Correlation, Collective Correlation and Vacancy-Wind Factors in Intermetallic Compounds Taking the B2 Structure, Def. Diff. Forum, 179, pp.1-16 (2000).

DOI: 10.4028/www.scientific.net/ddf.179-180.1

Google Scholar

[21] B. Zhang, A. Griesche, and A. Meyer. Diffusion in al-cu melts studied by time-resolved x-ray radiography. Physical review letters, 104(3):35902, (2010).

DOI: 10.1103/physrevlett.104.035902

Google Scholar

[22] A. Meyer, S. Stüber, D. Holland-Moritz, O. Heinen, and T. Unruh. Determination of self-diffusion coefficients by quasielastic neutron scattering measurements of levitated ni droplets. Phys. Rev. B, 77:092201, (2008).

DOI: 10.1103/physrevb.77.092201

Google Scholar

[23] S. K. Das, J. Horbach, M. M. Koza, S. Mavila Chatoth, and A. Meyer. Influence of chemical short-range order on atomic diffusion in Al–Ni melts. Appl. Phys. Lett., 86(1):011918, (2005).

DOI: 10.1063/1.1845590

Google Scholar

[24] S. Stüber, D. Holland-Moritz, T. Unruh, and A. Meyer. Ni self-diffusion in refractory al-ni melts. Phys. Rev. B, 81:024204, (2010).

DOI: 10.1103/physrevb.81.024204

Google Scholar

[25] P. Kuhn, J. Horbach, F. Kargl, A. Meyer, and Th. Voigtmann. Diffusion and interdiffusion in binary metallic melts. Phys. Rev. B, 90:024309, (2014).

DOI: 10.1103/physrevb.90.024309

Google Scholar

[26] A. Meyer and F. Kargl. Diffusion of mass in liquid metals and alloys - recent experimental development and new perspectives. Int. J. Microgravity Sci. Appl., 30(1):30–35, (2013).

Google Scholar

[27] F. Kargl, M. Engelhardt, F. Yang, H. Weis, P. Schmakat, B. Schillinger, A. Griesche, and A. Meyer. In situ studies of mass transport in liquid alloys by means of neutron radiography. Journal of Physics: Condensed Matter, 23(25):254201, (2011).

DOI: 10.1088/0953-8984/23/25/254201

Google Scholar

[28] F. Kargl, H. Weis, T. Unruh, and A. Meyer. Self diffusion in liquid aluminium. J. Phys. Conf. Ser., 340(1):012077, (2012).

DOI: 10.1088/1742-6596/340/1/012077

Google Scholar

[29] J. Horbach, S. K. Das, A. Griesche, M.-P. Macht, G. Frohberg, and A. Meyer, Self-diffusion and interdiffusion in Al80Ni20 melts: Simulation and experiment, Phys Rev B 75, 174304 (2007).

DOI: 10.1103/physrevb.75.174304

Google Scholar

[30] X.-P. Tang, Ulrich Geyer, Ralf Busch, William L. Johnson & Yue Wu, Diffusion mechanisms in metallic supercooled liquids and glasses, Nature, 402, 160-162 (1999).

DOI: 10.1038/45996

Google Scholar

[31] F. Faupel, Diffusion in non-crystalline metallic and organic media. Phys. Status. Solidi. A 134, 9–59 (1992).

DOI: 10.1002/pssa.2211340102

Google Scholar

[32] F.H. Stillinger, Relaxation and flow mechanisms in fragile, glass-forming liquids. J. Chem. Phys. 89, 6461–6469 (1988).

DOI: 10.1063/1.455365

Google Scholar

[33] Kivelson,S. A., Zhao,X., Kivelson,D., Fischer,T. M. & Knobler, C. M. Frustration-limited clusters in liquids. J. Chem. Phys. 101, 2391–2397 (1994).

DOI: 10.1063/1.468414

Google Scholar

[34] E.G.D. Cohen, P. Westerhuijs, and I.M. de Schepper, Half Width of Neutron Spectra, Phys. Rev. Lett. 59, 2872 (1987).

DOI: 10.1103/physrevlett.59.2872

Google Scholar

[35] I.M. de Schepper, E.G.D. Cohen, and M.J. Zuilhof, The width of neutron spectra and the heat mode of fluids, Phys. Lett. 101A, 399 (1984).

DOI: 10.1016/0375-9601(84)90613-3

Google Scholar

[36] S. Chapman, T. G. Cowling, and D. Burnett, The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases, 3rd ed. Cambridge university press, New York, (1990).

DOI: 10.2307/3609795

Google Scholar

[37] A. H. Schoen, Correlation and the isotope effect for diffusion in crystalline solids,, Physical Review Letters, vol. 1, no. 4, p.138, (1958).

Google Scholar

[38] H. R. Schober, Isotope effect in the diffusion of binary liquids,, Solid state communications, vol. 119, no. 2, pp.73-77, (2001).

DOI: 10.1016/s0038-1098(01)00219-8

Google Scholar

[39] W.Y. Wang, H.Z. Fang, S.L. Shang, H.Zhang, Y.Wang, X.Hui, S.Mathaudhu, Z.K. Liu, Atomic structure and diffusivity in liquid Al80Ni20 by ab initio molecular dynamics simulations, Physica B: Condensed Matter, 406 (2011) pp.3089-3097.

DOI: 10.1016/j.physb.2011.05.013

Google Scholar

[40] I.V Belova, T. Ahmed, U. Sarder, A.V. Evteev, E.V. Levchenko, and G. E. Murch, The Manning factor for direct exchange and ring mechanisms, Phil. Mag., 97 pp.230-247, (2017).

DOI: 10.1080/14786435.2016.1255368

Google Scholar