Oblique Cube Texture Formation in High Purity Aluminum during Equal Channel Angular Pressing

Article Preview

Abstract:

Aluminum of 5N purity has been deformed at room temperature by equal channel angular pressing using three passes of route A. The microstructure and texture have been investigated by electron back-scattering and neutron diffraction. The microstructure from the first pass on is totally dynamically recrystallized. The recrystallization texture consists of an oblique cube component. The oblate grains and the cube texture are anticlockwise rotated about the transverse direction. The inclination with respect to the extrusion direction depends on the distance from the top of the extruded bar and changes from pass to pass. The mechanism of ormation of the recrystallization microstructure and texture is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 105)

Pages:

351-356

Citation:

Online since:

July 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.M. Segal: Mater. Sci. Eng. A Vol. 197 (1995), p.157.

Google Scholar

[2] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Mater. Sci. Eng. A Vol. 257 (1998), p.328.

Google Scholar

[3] J.R. Bowen: The Formation of Ultra-Fine Grained Model Aluminium and Steel Alloys (PhD Thesis, Univ. of Manchester 2000).

Google Scholar

[4] F. Montheillet and J. Le Coze: Phys. Stat. Sol. (a) Vol. 189 (2002), p.51.

Google Scholar

[5] F. Haessner: Recrystallization 90 (T. Chandra (ed. ) TMS, Warrendale 1990), p.511.

Google Scholar

[6] D. Ponge, M. Bredehöft and G. Gottstein: Scripta Mater. Vol. 37 (1997), p.1769.

Google Scholar

[7] K. Tanaka, M. Otsuka and H. Yamagata: Mat. Trans., JIM, Vol. 40 (1999), p.242.

Google Scholar

[8] H. Yamagata, Y. Ohuchida, N. Saito and M. Otsuka: Scripta Mater. Vol. 45 (2001), p.1055.

Google Scholar

[9] V.M. Segal: Mater. Sci. Eng. A Vol. 338 (2002), p.331.

Google Scholar

[10] G.S. Lister and A.W. Snoke: J. Struct. Geol. Vol. 6 (1984), p.617.

Google Scholar

[11] E. Rybacki, M.S. Paterson, R. Wirth and G. Dresen: J. Geophys. Res. Vol. 108 (2003), ETG 8-1.

Google Scholar

[12] L.S. Toth, R. Arruffat Massion, L. Germain, S.C. Baik and S. Suwas: Acta Mater. Vol. 52 (2004), p.1885.

Google Scholar

[13] N. Scheerbaum: Textur- und Mikrostrukturentwicklung von kubisch-flaechenzentrierten Metallen beim Pressen durch einen abgewinkelten Kanal (Diploma Thesis, TU Dresden 2004).

Google Scholar

[14] W. Skrotzki, B. Klöden, N. Scheerbaum, R. Tamm, C. -G. Oertel, U. Garbe, E. Rybacki and H. -G. Brokmeier: Proc. Int. Seminar on Advanced X-Ray Techniques in Research and Industry (A.K. Singh (ed. ) Hyderabad 2003, in press).

Google Scholar

[15] S. Suwas, L.S. Toth, J. -J. Fundenberger, A. Eberhardt and W. Skrotzki: Scripta Mater. Vol. 49 (2003), p.1203.

Google Scholar

[16] B. Fels: Textur- und Mikrostrukturuntersuchungen an stranggepresstem Aluminium (Diploma Thesis, TU Dresden 1996).

Google Scholar

[17] A.A. Salem, Z. Horita, T.G. Langdon, T.R. McNelley and S.L. Semiatin: Ultrafine Grained Materials III (Y.T. Zhu, T.G. Langdon, R.V. Valiev, S.L. Semiatin, D.H. Shin and T.C. Lowe (eds. ), TMS (The Minerals, Metals & Materials Society, Warrendale), p.81.

Google Scholar

[18] J.J. Jonas and L.S. Toth: ISIJ International Vol. 43 (2003), p.701.

Google Scholar