Hybrid HAp-Maleic Anhydride Copolymer Nanocomposites Obtained by In Situ Functionalisation

Article Preview

Abstract:

The aim of the work is to establish if maleic anhydride copolymer acts as a grain growth modulator and/or as a biocompatible functionalisation agent for hydroxyapatite. Experimental work was developed in three directions: nanocomposites synthesis, nanocomposites characterization and citotoxicity tests on nanocomposites. Maleic anhydride copolymer – HAp nanocomposites were prepared by in situ functionalisation in hydrothermal conditions and were characterized by chemical quantitative analysis, XRD, FT-IR, SEM, specific surface area and picnometric densities. Chemical bonding between the copolymer carboxyl groups and calcium ions of HAp induced a peak of 1577 cm-1 on the FT-IR analysis. Following the evolution of this characteristic peak with the hydrothermal synthesis conditions (different temperatures and pressures) and corroborates the results with XRD and SEM analysis it was pointed out the copolymer grain growth modulator behaviour. Citotoxicity studies in vitro on mice fibroblast cultures were performed. The results proved the biocompatibility of new hybrid –polymer nanocomposites.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 106)

Pages:

47-56

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Kawasita, N. Nankao, M. Monodo, H. Kim, T. Beppu, T. Miomoto, T. Kokubo and T. Nakamura, Biomaterials 24 (2003) 2477-2484.

Google Scholar

[2] G. Kickelbick, Prog. Polym. Sci. 28 (2003) 83-114.

Google Scholar

[3] M. Wang, Biomaterials 24 (2003) 2133-2151.

Google Scholar

[4] M. C. Chong, C. C Ko and W. H. Douglas, Biomaterials 24 (2003) 2853-2862.

Google Scholar

[5] S. Itoh, M. Kikuchi, K. Fakakuda, K. Shinomiya, Biomaterials 23 (2002) 3919-3926.

Google Scholar

[6] N. Spanos, V. Deimde and P.G. Kontsonokos, Biomaterials 23 (2002) 947-953.

Google Scholar

[7] M. Chong and Y. Tanaka, Biomaterials 23 (2002) 4811-4818.

Google Scholar

[8] M. Kawasia, N. Nakao, M. Minoda, H.M. Kim, T. Beppu, T. Miyamoto, T. Kokubo and T. Nakamura, Biomaterials 24 (2003) 2477-2484.

DOI: 10.1016/s0142-9612(03)00050-4

Google Scholar

[9] A. L. Olveiro, P.B. Malafaya and R.L. Reis, Biomaterials 24 (2003) 2575-2584.

Google Scholar

[10] S. C. Lion, S Y Chen, H. Y. Lee and Y.S. Bow Biomaterials 25 (2004) 189-196.

Google Scholar

[11] J. Pena and M. Vallet-Regi, J. Eur. Ceram. Soc., 23 (2003) 1687-1696.

Google Scholar

[12] W. Suchanek, H. Suda, M. Yashima, N. Kakkihana, M. Yoshimura, J. Mater. Res. 10 (1995) 52`-529.

Google Scholar

[13] R. Riman, W. Suchanek and M. Lencka, Ana. Chim. Sci. Mat., 27 (2), (2002) 15-36.

Google Scholar

[14] R. M. Piticescu, R. Piticescu, D. Taloi and V. Badilita, Nanotechnology 14 (2003), 312-317.

DOI: 10.1088/0957-4484/14/2/341

Google Scholar

[15] Romanian Patent RO 106745B1 from 30. 06. (1999).

Google Scholar

[16] E. Baciu, C.G. Chitanu, A. Couture, P/ Grandclaudon, G. Singurel and A. Caropov, Eur. Polymer J., 38 (2002), 1509-1521.

Google Scholar

[17] C. N. Cascaval, C.G. Chitanu and A. Carpov, Temochim. Acta 275(1996) 225-233.

Google Scholar

[18] C.G. Chitanu, G.C. Bumbu, A. Stoleriu, A. Carpov, C. Vasile, A. Anghelescu-Dogan and M. Rinaudo, Polym. Degr. and Stab., 65 (1999), 75-85.

DOI: 10.1016/s0141-3910(98)00220-1

Google Scholar