[1]
ANSYS User Manual, ANSYS Inc., PA., USA.
Google Scholar
[2]
ABAQUS User Manual, ABAQUS Inc., RI., USA.
Google Scholar
[3]
Kahraman, A. and Singh, R., 'Non-Linear Dynamics of a Spur Gear Pair', Journal of Sound and Vibration, Vol. 142, No. 1, pp.47-75, (1990).
DOI: 10.1016/0022-460x(90)90582-k
Google Scholar
[4]
Amabili, M. and Rivola, A., 'Dynamic Analysis of Spur Gear Pairs: Steady-State Response and Stability of the SDOF Model with Time-Varying Meshing Damping', Mechanical Systems and Signal Processing, Vol. 11, No. 3, pp.375-390, (1997).
DOI: 10.1006/mssp.1996.0072
Google Scholar
[5]
Ozguven, H. N. and Houser, D. R., 'Mathematical Models used in Gear Dynamics - a Review', Journal of Sound and Vibration, Vol. 121, pp.383-411, (1988).
DOI: 10.1016/s0022-460x(88)80365-1
Google Scholar
[6]
Shing, T., Tsai, L., and Krishnaprasad, P., An Improved Model for the Dynamics of Spur Gear Systems with Backlash Consideration , ASME-PUNLICATION-DE, Vol. 65-1, pp.235-244, (1993).
DOI: 10.1115/detc1993-0311
Google Scholar
[7]
Blankenship, G. W. and Kahraman, A., Gear dynamics experiments, Part-I : Characterization of forced response, ASME, Power Transmission and Gearing Conference, San Diego, (1996).
Google Scholar
[8]
Kahraman, A. and Blankenship, G. W., Gear dynamics experiments, Part-II : Effect of involute contact ratio, ASME, Power Transmission and Gearing Conference, San Diego, (1996).
Google Scholar
[9]
Kahraman, A. and Blankenship, G. W., Gear dynamics experiments, Part-III : Effect of involute tip relief, ASME, Power Transmission and Gearing Conference, San Diego, (1996).
Google Scholar
[10]
Parker, R. G. and Vijayakar, S. M. and Imajo, T., 'Non-linear Dynamic Response of a Spur Gear Pair : Modeling and Experimental Comparisons', Journal of Sound and Vibration, Vol. 237, pp.435-455, (2000).
DOI: 10.1006/jsvi.2000.3067
Google Scholar
[11]
Bolton, K. M., Biarc curves, Computer Aided Design, Vol. 7, No. 2, pp.89-92, (1975).
DOI: 10.1016/0010-4485(75)90086-x
Google Scholar
[12]
Parkinson, D. B. and Moreton, D. N., 'Optimal biarc curve fitting, Computer Aided Design, Vol. 23, No. 6, pp.411-419, (1991).
DOI: 10.1016/0010-4485(91)90009-l
Google Scholar
[13]
Ryu, H. S., Huh. K. S., Bae, D. S. and Choi, J. H., 'Development of a Multibody Dynamics Simulation Tool for Tracked Vehicles, Part I : Efficient Contact and Nonlinear Dynamic Modeling', JSME International Journal, Series C, Vol. 46, No. 2, pp.540-549, (2003).
DOI: 10.1299/jsmec.46.540
Google Scholar
[14]
Lankarani, H. M., Canonical Impulse-Momentum Equations for Impact Analysis of Multibody System, ASME, Journal of Mechanical Design, Vol. 180, pp.180-186, (1992).
DOI: 10.1115/1.2916914
Google Scholar
[15]
Bae, D. S., Han, J. M., and Yoo., H. H., A Generalized Recursive Formulation for Constrained Mechanical System Dynamics", "Mech. Struct. & Mach., Vol. 27(3), pp.293-315, (1999).
DOI: 10.1080/08905459908915700
Google Scholar
[16]
Angeles, J., Fundamentals of Robotic Mechanical Systems, Springer, (1997).
Google Scholar
[17]
Wittenburg, J., Dynamics of Systems of Rigid Bodies, B. G. Teubner, Stuttgart, (1977).
Google Scholar
[18]
Yen, J., Haug, E. J. and Potra, F. A., Numerical Method for Constrained Equations of Motion in Mechanical Systems Dynamics, Technical Report R-92, Center for Simulation and Design Optimization, Department of Mechanical Engineering, and Department of Mathematics, University of Iowa, Iowa City, Iowa, (1990).
DOI: 10.19070/2167-8685-160008e
Google Scholar