Structural Aspects of Phase Transitions

Article Preview

Abstract:

There are two kinds of structural transformations in the crystalline solid state: solid state reactions, in which the product chemically different from the starting material can be isolated, and polymorphic transitions, when the phases have different organization of identical molecules in the crystal structures. As a consequence, the starting and the final phases of a solid state reaction differ in the melt and vapor, while different polymorphic modifications are identical in melt or gas phase. Some examples of the different phase transitions in the solid state are described in detail: the π-molecular complexes, the hydrogen-bond transformations and the reversible single crystal - twin transition.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 112)

Pages:

1-20

Citation:

Online since:

May 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Braga and F. Grepioni: Angew. Chem. Int. Ed. 43 (2004), 4002.

Google Scholar

[2] for example: hydrocarbons-picric acid: R.P. Rastogi, P.S. Bassi and S.L. Chadha: J. Phys. Chem. 66 (1962), 2707; ibid. 67 (1963), 2569; naphthols-picric acid: R.P. Rastogi and N.B. Singh: ibid. 70 (1966), 3315.

DOI: 10.1021/j100882a047

Google Scholar

[3] M.C. Etter, S.M. Reutzel and C.G. Choo: J. Am. Chem. Soc. 115 (1993), 4411.

Google Scholar

[4] D. Braga, L. Maini, M. Polito and F. Grepioni: Chem. Commun. (2002), 2372.

Google Scholar

[5] for example, dumb-bell shaped C120: G. -W. Wang, K. Komatsu, Y. Murata and M. Shiro: Nature 387 (1997), 583; trimers C180: M. Kunitake, S. Uemura, O. Ito, K. Fujiwara, Y. Murata and K. Komatsu: Angew. Chem. Int. Ed. 41 (2002), 969.

DOI: 10.1038/42439

Google Scholar

[6] G. Rothenberg, A.P. Downie, C.L. Raston and J.L. Scott: J. Am. Chem. Soc. 123 (2001), 8701.

Google Scholar

[7] J.D. Dunitz: Pure & Appl. Chem. 63 (1991), 177.

Google Scholar

[8] I.C. Paul and D.Y. Curtin: Acc. Chem. Res. 6 (1973), 217.

Google Scholar

[9] M.D. Cohen and G.M.J. Schmidt: J. Chem. Soc. (1964), (1996).

Google Scholar

[10] J.M. Thomas, S.E. Morsi and J.P. Desvergne: Adv. Phys. Org. Chem. 15 (1977), 63; J. Even and M. Bertault: Cond. Matt. News 8 (2000), 9.

Google Scholar

[11] R. Kuhn & H.W. Ruelius: Chem. Ber. 83 (1950), 420.

Google Scholar

[12] C.N. Sukenik, J.A.P. Bonapace, N.S. Mandel, R.G. Bergman, P. -Y. Lau and G. Wood: J. Am. Chem. Soc. 97 (1975), 5290; (c) C.N. Sukenik, J.A.P. Bonapace, N.J. Mandel, P. -Y. Lau, G. Wood and R.G. Bergman: J. Am. Chem. Soc. 99 (1977), 851.

DOI: 10.1021/ja00851a051

Google Scholar

[13] J.A.R.P. Sarma and J.D. Dunitz: Acta Cryst. B46 (1990), 780.

Google Scholar

[14] M. Dessolin and M. Golfier: J. Chem. Soc. Chem. Commun. (1986), 38; M. Dessolin, O. Eisenstein, M. Golfier, T. Prange and P. Sautet: J. Chem. Soc. Chem. Commun. (1992), 132.

DOI: 10.1039/c39920000132

Google Scholar

[15] M. Greenberg, V. Shteiman and M. Kaftory: Acta Cryst. B57 (2001), 428.

Google Scholar

[16] L. Tenud, S. Farooq, J. Seibl & A. Eschenmoscher: Helv. Chim. Acta 53 (1970), (2059).

Google Scholar

[17] P. Venugopalan, K. Venkatesan, J. Klausen, E. Novotny-Bregger, A. Eschenmoser and J.D. Dunitz: Helv. Chim. Acta 74 (1991): 662.

DOI: 10.1002/hlca.19910740323

Google Scholar

[18] J. Bernstein. Polymorphism in Molecular Crystals. IUCr Monographs on Crystallography, vol. 14. (Clarendon Press, Oxford, 2002).

Google Scholar

[19] W.C. McCrone. Polymorphism. In: D. Fox, M.M. Labes and A. Weissberger (eds. ): Physics and chemistry of the organic solid state, vol. 2 (Wiley Interscience, New York, U.S.A., 1965), pp.725-767.

DOI: 10.1126/science.160.3827.524

Google Scholar

[20] J.D. Dunitz: Acta Cryst. B51 (1995), 619.

Google Scholar

[21] L. Yu, G.A. Stephenson, C.A. Mitchell, C.A. Bunnell, S.V. Snorek, J.J. Bowyer, T.B. Borchardt, J.G. Stowell and S.R. Byrn: J. Am. Chem. Soc. 120 (2000), 585.

DOI: 10.1021/ja9930622

Google Scholar

[22] form I: V. Bertolasi, V. Ferretti, G. Gilli, and P.A. Borea: Acta Cryst. C40 (1984), 1981; A.K.S. Muir and P.W. Codding: Can.J. Chem. 63 (1985), 2752; form II: M. Kubicki and P.W. Codding: Acta Cryst. C57 (2001), 728.

DOI: 10.1107/s0108270101003171

Google Scholar

[23] F.H. Herbstein: Cryst. Growth Des. 4 (2004), 1419.

Google Scholar

[24] P. Ehrenfest: Proc. Acad. Sci. Amst. 36 (1933): 153.

Google Scholar

[25] L.D. Landau and E.M. Lifshitz. Statistical Physics. Pergamon Press, London (1958).

Google Scholar

[26] C.N.R. Rao: Acc. Chem. Res. 17 (1984), 83.

Google Scholar

[27] H.F. Franzen: Chem. Mater. 2 (1990), 486.

Google Scholar

[28] F.H. Herbstein: Cryst. Rev. 5 (1996), 181.

Google Scholar

[29] H.M. Powell, G. Huse and P.W. Cooke: J. Chem. Soc. (1943), 153.

Google Scholar

[30] P. Coppens: Phys. Rev. Lett. 35 (1975).

Google Scholar

[31] E. Espinosa, E. Molins and C. Lecomte: Phys. Rev. B56 (1997), 1820.

Google Scholar

[32] R.S. Mulliken: J. Am. Chem. Soc. 72 (1952), 600; R.S. Mulliken: J. Phys. Chem. 56 (1952), 801.

Google Scholar

[33] F.H. Herbstein and J.A. Snyman: Phil. Trans. Roy. Soc. London A264 (1969), 635; C.C. Allen, J.C.A. Boeyens and D.C. Lavendis: S. Afr.J. Chem. 42 (1989), 38.

Google Scholar

[34] F.H. Herbstein, R.E. Marsh and S. Samson: Acta Cryst. B50 (1993), 174.

Google Scholar

[35] F.H. Herbstein and S. Samson: Acta Cryst. B50 (1994), 182.

Google Scholar

[36] A.G. Dunn, A. Rahman and L.A.K. Staveley: J. Chem. Thermodynamics 10 (1978), 787; J. Boerio-Goates and E.F. Westum, Jr. Mol. Cryst. Liq. Cryst. 60 (1980), 237.

Google Scholar

[37] for example: G. Jeffrey and W. Saenger. Hydrogen Bond in Biological Sciences, (Wiley, Berlin, 1991); S. Scheiner: Hydrogen Bonding. A Theoretical Perspective (Oxford University Press, New York, 1997); G.R. Desiraju and T. Steiner: The Weak Hydrogen Bond (IUCr Monographs on Crystallography, vol. 9. (Oxford University Press, Oxford, 1999).

DOI: 10.1021/ja0047368

Google Scholar

[38] M.C. Etter, Z. Urbańczyk-Lipkowska, D.A. Jahn and J.S. Frye: J. Am. Chem. Soc. 108 (1986), 5871.

Google Scholar

[39] for example, syn/SYN: dimedone (5, 5-dimethyl-1, 3-cyclohexanedione): D. Semmingsen: Acta Chem. Scand. B28 (1974).

Google Scholar

[32] and anti/SYN in squaric acid (3, 4-dihydroxy-3-cyclobutene-1, 2-dione): D. Semmingsen, F.J. Hollander, and T.F. Koetzle: J. Chem. Phys. 66 (1977), 4405.

DOI: 10.1063/1.433745

Google Scholar

[40] A. Katrusiak: Acta Cryst. B46 (1990), 246.

Google Scholar

[41] A. Katrusiak: Acta Cryst. B47 (1991), 398.

Google Scholar

[42] A. Katrusiak and M. Szafrański: Acta Cryst. C50 (1994), 1161; A. Katrusiak and M. Szafrański: J. Mol. Struct. 378 (1996), (2065).

DOI: 10.1107/s0108270193012272

Google Scholar

[43] M. Szafrański and A. Katrusiak: Chem. Phys. Lett. 391 (2004), 267.

Google Scholar

[44] M. Kubicki: Acta Cryst. B60 (2004), 333.

Google Scholar

[45] A. Katrusiak: Acta Cryst. B56 (2000), 872.

Google Scholar

[46] M. Hostettler, H. Birkedal, M. Gardon, G. Chapuis, D. Schwarzenbach and M. Bonin. Acta Cryst. B55 (1999), 448.

Google Scholar

[47] D. Hashizume, N. Miki, T. Yamazaki, Y. Aoyagi, T. Arisato, H. Uchiyama, T. Endo, M. Yasui and F. Iwasaki: Acta Cryst. B59 (2003), 404.

Google Scholar

[48] C.C. Wilson: Acta Cryst. B57 (2001), 435.

Google Scholar

[49] P. Coppens, I. Novozhilova and A. Kovalevsky: Chem. Rev. 102 (2002), 861.

Google Scholar

[50] P. Coppens: X-ray charge densities and chemical bonding. IUCr Monographs on Crystallography, vol. 5. (Oxford University Press, Oxford, 1997); T. Koritsanszky and P. Coppens: Chem. Rev. 101 (2001), 1583.

DOI: 10.1021/cr990112c

Google Scholar

[51] Y. Ivanov, T. Nimura and K. Tanaka: Acta Cryst. B60 (2004), 359.

Google Scholar