Internal Dynamics of Norethisterone by NMR, IINS and QC Methods

Article Preview

Abstract:

The low-temperature inelastic incoherent neutron scattering spectrum of norethisterone was compared with that calculated by the density functional theory method. The quantum chemical calculations permitted proposing the assignment of the vibrational modes. In particular, the dynamics of the methyl group substituted at C(13) of the steroid skeleton was analysed on the basis of the neutron scattering spectra and temperature dependence of the spin-lattice relaxation time (1H NMR).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 112)

Pages:

93-100

Citation:

Online since:

May 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.P. Marnon, J. Lepicard , J. Delettre , C.R. Acad. Sci. Paris C 282 (1976) p.387.

Google Scholar

[2] A. Abraham, The Principle of Magnetism, Oxford University Press, Oxford, (1961).

Google Scholar

[3] C.P. Slichter, Principles of Magnetic Resonance, Springer-Verlag Berlin Heidelberg new York, (1978).

Google Scholar

[4] S.W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Clarendon Press, Oxford, (1984).

Google Scholar

[5] A.J. Dianoux, G. Lander, (Eds), Neutron data Booklet, ILL Neutrons for Sciences, Grenoble, (2003).

Google Scholar

[6] I. Natkaniec, S.I. Bragin, J. Brankowski, J. Mayer, Proceedings of the ICANS XII Meeting, Abington, 1993, vol. I, 1994, RAL Report, 94-025, I, p.89, and www. jinr. ru.

Google Scholar

[7] M.J. Frish, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.D. Zakrzewski , J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone,M. Cossi , R. Cammi, B. Mennucci, C. Pomeli, C. Adamo, S. Clifford, J. Ochterski, G.A. Patersson, P.Y. Ayala , Q. Cui, K. Morokuma, D.K. Malick., A.D. Rabuck, K. Raghavachari., J.B. Foresman., J. Cioslowski, J.V. Ortiz, B.B. Stefanov., G. Liu., A. Liashenko., P. Piskorz., I. Komaromi., R. Gomperts., R.L. Martin, D. Fox, T. Keith., M.A. Al-laham, C.Y. Peng., A. Nanayakkara, C. Gonzalez, M.P. Challacomber., P.M.W. Gill, B.G. Johnson., W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon., E.S. Replogle, J.A. Pople., GAUSSIAN 03, Gaussian, Inc., Pittsburgh PA, (2003).

Google Scholar

[8] A.D. Becke, J. Chem. Phys., 98, (1993) p.5648.

Google Scholar

[9] A. D Becke, J. Chem. Phys., 97, (1992) p.9173.

Google Scholar

[10] C. Lee, W. Yang, R.G. Parr, Phys. Rev., B 37, (1988) p.785.

Google Scholar

[11] L. Laaksonen, gOpenMol 2. 32, Center for Scientific Computing, Espoo, Finland, (2002).

Google Scholar

[12] Z. Galdecki, P. Grochulski, Z. Wawrzek, W. L. Duax, J. Cryst. Spectr. Res. 19 (1989) p.941.

Google Scholar

[13] K. Holderna-Natkaniec, K. Jurga, I. Natkaniec, D. Nowak, A. Szyczewski, Chem. Phys. 317 (2005) p.178.

DOI: 10.1016/j.chemphys.2005.06.043

Google Scholar

[14] A.J.J. Ramirez-Cuesta, Comp. Phys. Commun., 157, (2004) 226.

Google Scholar

[15] V. Yu. Kazimirov, I. Natkaniec, Comm. JINR, P14-2003-48, Dubna (2003).

Google Scholar

[16] www. ccdc. cam. ac. uk.

Google Scholar

[17] K. Holderna-Natkaniec, I. Natkaniec, in preparation.

Google Scholar

[18] N. Blombergen, E.M. Purcell, R.V. Pond, Phys. Rev., 73, (1948) p.679.

Google Scholar