Electron Momentum Density of Hexagonal Magnesium Studied by Compton Scattering

Article Preview

Abstract:

Directional Compton profiles of single crystal of hcp magnesium have been measured with scattering vectors along the [10 10], [1120] and [0001] directions in reciprocal space (special directions ΓΜ, ΓΚ, ΓΑ) using high-energy (662 keV) gamma radiation from a 137Cs isotope source. The experimental data were compared with corresponding theoretical Korringa-Kohn-Rostoker (KKR) calculations. The directional difference profiles, both experimental (of medium resolution) and theoretical ones, show very small anisotropy of the electron momentum density in magnesium, 2-3 times lower than in zinc and cadmium single crystals, significantly lower than observed in cubic metals. This small directional effect is in good agreement with Compton 60-keV energy experiments and positron annihilation data presented by other authors.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 112)

Pages:

123-132

Citation:

Online since:

May 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. J. Cooper: Rep. Prog. in Physics Vol. 48 (1985), p.415.

Google Scholar

[2] W. Schülke: Nucl. Instr. and Methods A Vol. 280 (1989), p.383.

Google Scholar

[3] L. Dobrzyński: Z. Naturforch. A Vol. 48 (1993), p.266.

Google Scholar

[4] M. Cooper, P. Mijnarends, N. Shiotani, N. Sakai and A. Bansil (Eds. ): X-ray Compton Scattering (Oxford University Press Inc., New York 2005).

DOI: 10.1093/acprof:oso/9780198501688.001.0001

Google Scholar

[5] R. W. G. Wyckoff: Crystal Structures (Wiley, New York 1963).

Google Scholar

[6] O. Aikala: Phil. Mag. Vol. 31 (1975), p.935; O. Aikala: Phil. Mag. Vol. 33 (1976), p.603.

Google Scholar

[7] S. Manninen and T. Paakkari: Phil. Mag. B Vol. 44 (1981), p.127.

Google Scholar

[8] N. Sakai and H. Sekizawa: J. Phys. Soc. Jpn. Vol. 50 (1981) p.2606.

Google Scholar

[9] R. J. Weiss: Phil. Mag. Vol. 24 (1971), p.1447.

Google Scholar

[10] N. Shiotani, T. Okada, H. Sekizawa and S. Wakoh: J. Phys. Soc. Jpn. Vol. 50 (1981) p.498.

Google Scholar

[11] S. Wakoh: J. Phys. Soc. Jpn. Vol. 50 (1981) p.490.

Google Scholar

[12] M. Matsumoto, T. Sano and S. Wakoh: J. Phys. Soc. Jpn. Vol. 68 (1999) p.1035.

Google Scholar

[13] B. Williams (Ed. ): Compton Scattering (McGraw-Hill, London 1977).

Google Scholar

[14] A. Andrejczuk, L. Dobrzyński, J. Kwiatkowska, F. Maniawski, S. Kaprzyk, A. Bansil, E. śukowski, M. J. Cooper: Phys. Rev. Vol. 48 (1993), p.15552.

DOI: 10.1103/physrevb.48.15552

Google Scholar

[15] A. Andrejczuk, E. śukowski, L. Dobrzyński, M. J. Cooper: Nucl. Instr. and Meth. A Vol. 337 (1993), p.133.

Google Scholar

[16] J. Felsteiner, P. Pattison and M. J. Cooper: Philos. Mag. Vol. 30 (1974), p.537.

Google Scholar

[17] A. Bansil, S. Kaprzyk, A. Andrejczuk, L. Dobrzyński, J. Kwiatkowska, F. Maniawski, E. śukowski: Phys. Rev. B Vol. 57 (1998), p.314.

DOI: 10.1103/physrevb.48.15552

Google Scholar

[18] H. Reniewicz, A. Andrejczuk, M. Brancewicz, E. śukowski, L. Dobrzyński and S. Kaprzyk: Phys. Stat. Sol. b Vol. 241 (2004), p.1849.

DOI: 10.1002/pssb.200302002

Google Scholar

[19] K. Hämäläinen, S. Manninen, C. -C. Kao, W. Caliebe, J. B. Hastings, A. Bansil, S. Kaprzyk and P.M. Platzman: Phys. Rev. B Vol. 54 (1996), p.5453.

DOI: 10.1103/physrevb.54.5453

Google Scholar

[20] M. Itou, Y. Sakurai, T. Ohata, A. Bansil, S. Kaprzyk, Y. Tanaka, H. Kawata and N. Shiotani: J. Phys. Chem. Solidi Vol. 59 (1998), p.99.

DOI: 10.1016/s0022-3697(97)00146-7

Google Scholar

[21] A. Bansil: Electronic Band Structure and its Applications, edited by M. Yussouff, Lecture Notes in Physics, Vol. 283 (Springer, Verlag, Heidelberg, 1987), p.273; A. Bansil, S. Kaprzyk, and J. Tobola: Applications of Multiple Scattering Theory to Materials Science, edited by W. H. Butler, P. H. Dederichs, A. Gonis, and R. L. Weaver, MRS Symposia Proceedings No. 253 (Materials Research Society, Pittsburgh, 1992), p.505; A. Bansil, R. S. Rao, P. E. Mijnarends, and L. Schwartz: Phys. Rev. B Vol. 23 (1981).

DOI: 10.1007/3540180982_16

Google Scholar

[22] S. Kaprzyk and A. Bansil: Phys. Rev. B Vol. 42 (1990), p.7358.

Google Scholar

[23] A. Bansil and S. Kaprzyk: Phys. Rev. B Vol. 43 (1991), p.10335.

Google Scholar

[24] U. von Barth and L. Hedin: J. Phys. C Vol. 5 (1072), p.1629.

Google Scholar

[25] S. Kaprzyk: Acta Physica Polonica A Vol. 91 (1997), p.135.

Google Scholar

[26] G. Lehmann and M. Taut: Phys. Stat. Sol. b Vol. 54 (1972), p.469.

Google Scholar

[27] H. Reniewicz, A. Andrejczuk, L. Dobrzyński, E. śukowski and S. Kaprzyk: J. Phys.: Condens. Matter Vol. 13 (2001), p.11957.

Google Scholar

[28] A. J. Rollason, R. S. Holt and M. J. Cooper: J. Phys. F: Metal Phys. Vol. 13 (1983), p.1807.

Google Scholar

[29] A. J. Rollason, J. R. Schneider, D. Laundy and M. J. Cooper: J. Phys. F: Metal Phys. Vol. 17 (1987), p.1105.

Google Scholar

[30] P. Pattison, N. K. Hansen, J. R. Schneider: Z. Phys. B Vol. 46 (1982), p.285.

Google Scholar

[31] A. Andrejczuk, L. Dobrzyński, J. Kwiatkowska, F. Maniawski, S. Kaprzyk, A. Bansil, E. śukowski and M. J. Cooper: Phys. Rev. B Vol. 48 (1993), p.15552.

DOI: 10.1103/physrevb.48.15552

Google Scholar

[32] N. K. Hansen, P. Pattison and J. R. Schneider: Z. Phys. B Vol. 35 (1979), p.215.

Google Scholar

[33] G. Loupias, J. Petiau, A. Issolah and M. Schneider: Phys. Stat. Sol. b Vol. 102 (1980), p.79.

DOI: 10.1002/pssb.2221020105

Google Scholar

[34] K. Hämäläinen, S. Manninen, C. -C. Kao, W. Caliebe, J. B. Hastings, A. Bansil, S. Kaprzyk and P. M. Platzman: Phys. Rev. B Vol. 54 (1996), p.5453.

DOI: 10.1103/physrevb.54.5453

Google Scholar

[35] Y. Garreau and G. Loupias: Sol. State Comm. Vol. 74 (1990) p.583.

Google Scholar