An Influence of the Local Environment on Local Magnetic Moments and Hyperfine Fields in Fe3-xMnxAl

Article Preview

Abstract:

Ferromagnetic, intermetallic compound Fe3Al exhibits DO3-type crystal structure. There are two non-equivalent types of iron with different chemical neighbourhood – (A,C) and B sublattices. As a consequence of the different nearest environments of the iron atoms at these sites the different electronic and magnetic properties connected with these positions are observed. The aim of our research is to investigate the influence of the local surrounding of the iron on its magnetic moment and hyperfine field in compound Fe3-xMnxAl where iron is substituted by manganese.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 112)

Pages:

117-122

Citation:

Online since:

May 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.G. McKamey, J.H. Devan, P.F. Tortorelli and V.K. Sikka: J. Mater. Res. Materialia Vol. 6(8) (1991) p.1779.

Google Scholar

[2] Y. Nishino, C. Kumada and S. Asano: Scripta Materialia Vol. 36 (1997) p.461.

Google Scholar

[3] Y. Nishino: Mater. Sci. Eng. A Vol. 258 (1998) p.50.

Google Scholar

[4] R.S. Sundar and D.H. Sastry: Intermetalllics Vol. 8 (2000) p.1061.

Google Scholar

[5] G. Athanassiadis, G. Le Caer, J. Foct and L. Rimlinger: phys. stat. sol. (a) Vol. 40 (1977) p.425.

DOI: 10.1002/pssa.2210400208

Google Scholar

[6] B.V. Reddy, S.C. Deevi, A.C. Lilly and P.J. Jena: J. Phys.: Condens. Mat. Vol. 13 (2001) p.8363.

Google Scholar

[7] B.V. Reddy, P.J. Jena and S.C. Deevi: Intermetallics Vol. 8 (2000) p.1197.

Google Scholar

[8] B.V. Reddy, D.H. Sastry, S.C. Deevi and S.N. Khana: Phys. Rev. B Vol. 64 (2001) p.224419.

Google Scholar

[9] N. Lakshmi, K. Venugopalan and J. Varma: Phys. Rev. B Vol. 47 (1993) p.14054.

Google Scholar

[10] S.M. Kim and D.G. Morris: Acta Mater. Vol. 46 (1998) p.2587.

Google Scholar

[11] D. Satuła, L Dobrzyński, A. Malinowski, K. Szymański and J. Waliszewski: J. Magn. Magn. Mat. Vol. 140-144 (1995) p.61.

Google Scholar

[12] M. Pugaczowa-Michalska, A. Go and L. Dobrzyński: phys. stat. sol (b) Vol. 242 (2005) p.461.

Google Scholar

[13] O.K. Andersen, O. Jepsen, and M. Sob: Electronic Structure and Its Applications (Springer, Berlin 1987 ed. M. Yuassoff) p.2.

Google Scholar

[14] O.K. Andersen and O. Jepsen: Phys. Rev. Lett. Vol. 53 (1984) p.2571.

Google Scholar

[15] U. von Barth and L. Hedin: J. Phys. C Vol. 5 (1972) p.1629.

Google Scholar

[16] C.D. Hu and D. C. Langreth: Phys Scr. Vol. 32 (1985) p.391.

Google Scholar

[17] A. Abragam: The Principles of Nuclear Magnetism (Oxford University, Oxford 1961).

Google Scholar

[18] H. Bremers, Ch. Jarms and J. Hesse: Conference Proceedings, Vol. 50, International Conference on the Application of the Mössbauer effect, (ICAME 95), (1996) p.319.

Google Scholar

[19] M. I. Darby: J. Phys. F: Metal. Phys. 7 (1977) p. L69.

Google Scholar

[20] D. C. Price: J. Phys. F: Metal. Phys. 8 (1978) p.933.

Google Scholar

[21] S. Mager, E. Wieser, T. Zemcik, O. Schneeweiss, P.N. Stetsenko and V. Surikov: phys. stat. sol. (a) Vol. 52 (1979) p.249.

DOI: 10.1002/pssa.2210520127

Google Scholar

[22] E. Wieser and S. Mager: phys. stat. sol. (a) Vol. 40 (1977) p.497.

Google Scholar