Analysis of the Deformation Behaviour of Cu Processed by High Pressure Torsion

Article Preview

Abstract:

In the investigation the 3D version of the Estrin-Tóth dislocation model was used to analyze deformation behaviour of pure Cu, subjected to high pressure torsion (HPT) under pressures equal to 0.8, 2, 5, 8 GPa. As a result of the computer simulation, the nature and reasons for strain hardening are analyzed, the dislocation density evolution versus degree of SPD and graincell size versus degree of SPD curves were plotted. It is shown that the model adequately reflects the acting deformation mechanisms and structural changes during HPT at different applied pressures. It has been stated that an increase of the applied pressure at HPT leads to an increase in the activity of dislocation sources and sinks in the grain-cell walls. Misorientations between boundaries are estimated. It is revealed that an increase of the applied pressure contributes to a growth of the misorientation angles between neighbouring grain-cells.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 114)

Pages:

101-108

Citation:

Online since:

July 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Progress Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[2] Nanomaterials by Severe Plastic Deformation (M.J. Zehetbauer, R.Z. Valiev, eds. ), Wiley- VCH, Wainhaim, Germany (2004), p.840.

Google Scholar

[3] M. Zehetbauer: Acta Metall. Mater. Vol. 41 (1993), p.589.

Google Scholar

[4] P. Les, M. Zehetbauer: Key Eng. Mater. Vol. 97-98 (1994), p.335.

Google Scholar

[5] M.J. Zehetbauer, H.P. Stüwe, A. Vorhauer, E. Schafler, J. Kohout: Adv. Eng. Mater. Vol. 5 (2003), p.330.

DOI: 10.1002/adem.200310090

Google Scholar

[6] L. S. Tóth, A. Molinari, and Y. Estrin: J. Eng. Mater. Technol. Vol. 124 (2002), p.71.

Google Scholar

[7] S.C. Baik, R.J. Hellmig, Y. Estrin, H.S. Kim: Z. Metallkd. Vol. 94 (2003), p.754.

Google Scholar

[8] N.A. Enikeev, H.S. Kim, I.V. Alexandrov, S.I. Hong: Nanomaterials by Severe Plastic Deformation (Eds: M. Zehetbauer, R. Z. Valiev) (2002), p.245.

Google Scholar

[9] Yu. Ivanisenko, R.Z. Valiev and H. -J. Fecht: Mater. Sci. and Eng. A Vol. 390 (2005), p.159.

Google Scholar

[10] B. Mingler, H. P. Karnthaler, M. Zehetbauer and R. Z. Valiev: Mater. Sci. and Eng. A, Vol. 319-321 (2001), p.242.

Google Scholar

[11] W. Pantleon: Acta Mater. Vol. 46 (1988), p.451.

Google Scholar

[12] M. Müller, M. Zehetbauer, A. Borbély, T. Ungár: Scripta Mater. Vol. 35 (1996), p.1461.

Google Scholar

[13] M. Zehetbauer, T. Ungár, L.S. Tóth, J. Illy, I. Kovács: Acta Metall. Vol. 34 (1986), p.1257.

Google Scholar

[14] P. I Poluhin, S.S. Gorelik, V.K. Vorontsov: Mettallurgiya (1982), p.584.

Google Scholar

[15] T. Hebesberger, A. Vorhauer, H. P Stüwe and R. Pippan: Nanomaterials by Severe Plastic Deformation (Eds: M. Zehetbauer, R. Z. Valiev) (2002), p.447.

DOI: 10.1002/3527602461.ch8b

Google Scholar

[16] A.P. Zhilyaev, G.V. Nurislamova, B. -K. Kim, M.D. Baró, J.A. Szpunar, T.G. Langdon: Acta Materialia Vol. 51 (2003), pp.753-765.

DOI: 10.1016/s1359-6454(02)00466-4

Google Scholar

[17] M. Zehetbauer and V. Zeumer: Acta metal mater. Vol. 41 (1993), p.577.

Google Scholar

[18] M. Zehetbauer, E. Schafler, T. Ungár, S. Kopacz and S. Bernstorf: J. Eng. Mater. Technol. Vol. 124 (2002) p.41.

Google Scholar