Mechanism of Grain Refinement in Aluminium in the Process of Hydrostatic Extrusion

Article Preview

Abstract:

Technically pure aluminium was subjected to three passes by the process of hydrostatic extrusion (HE) to a true strain of 3.8. TEM observations of the microstructure revealed that the first pass of the process refined the grains to 0.6 μm, but the mean grain size remains unaffected by further strain. The microstructural evolution over the strain range from 1 to 4 proceeds through the recovery of grain interiors. Significant changes have been found in grain boundary characteristics. The fraction of high angle grain boundaries profoundly increases as the true strain increases. Various mechanisms for their formation and their relevance to HE are discussed

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 114)

Pages:

109-116

Citation:

Online since:

July 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon: Acta mater 46 (1998), p.3317.

Google Scholar

[2] A.P. Zhilayaev, B. -K. Kim, G.V. Nurislamova, M.D. Baro, J.A. Szpunar, T.G. Langdon: Scripta mater. 46 (2002), p.575.

Google Scholar

[3] M. Richert, Q. Liu, N. Hansen: Mat. Sci. Eng. A260 (1999), p.275.

Google Scholar

[4] N. Tsuji, Y. Ito, Y. Saito, Y. Minamino: Scripta mater. 47 (2002), p.893.

Google Scholar

[5] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Progress in Mat. Sci. 45 (2000), p.103.

Google Scholar

[6] M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon: Mat. Sci. Eng. A324 (2002), p.82.

Google Scholar

[7] P.B. Prangnell, J.R. Bowen, P.J. Apps: Mat. Sci. Eng. A375-377 (2004), p.178.

Google Scholar

[8] M.A. Munos-Morris, C. Garcia Oca, D.G. Morris: Scripta mater. 48 (2003), p.213.

Google Scholar

[9] A.P. Zhilayaev, B. -K. Kim, G.V. Nurislamova, M.D. Baro, J.A. Szpunar, T.G. Langdon: Scripta mater 46 (2002), p.575.

Google Scholar

[10] T. Hebesberger, H.P. Stuwe, A. Vorhauer, F. Wetscher, R. Pippan: Acta mater. 53 (2005), p.393.

DOI: 10.1016/j.actamat.2004.09.043

Google Scholar

[11] K. Muller at al. Fundamentals of Extrusion Technology (Giesel Verlag, Germany 2004).

Google Scholar

[12] M. Lewandowska, H. Garbacz, W. Pachla, A. Mazur, K.J. Kurzydłowski: Solid State Phenomena, 101 (2005), p.65.

Google Scholar

[13] M. Lewandowska, H. Garbacz, W. Pachla, A. Mazur, K.J. Kurzydłowski: Materials Science - Poland 23 (2005), pp.279-286.

Google Scholar

[14] B. Adamczyk-Cieślak, J. Mizera, M. Lewandowska, K.J. Kurzydłowski: Rev. Adv. Mater. Sci. 8 (2004), p.107.

Google Scholar

[15] C.Y. Barlow, P. Nielsen, N. Hansen: Acta mater. 52 (2004), p.3967.

Google Scholar

[16] Q. Liu, X. Huang, D.J. Lloyd, N. Hansen: Acta mater. 50 (2002), p.3789.

Google Scholar

[17] O.V. Mishin, D. Juul Jensen, N. Hansen: Mat. Sci. Eng. A342 (2003), p.320.

Google Scholar

[18] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai: Acta mater. 47 (1999), p.579.

Google Scholar

[19] K.J. Kurzydlowski, B. Ralph: Quantitative Description of Microstructure of Materials. CRC Press, Boca Raton; (1995).

Google Scholar

[20] K.J. Kurzydłowski: Mat. Sci. Forum 503-504 (2006), pp.341-348.

Google Scholar