Features of Cyclic Extrusion Compression: Method, Structure & Materials Properties

Article Preview

Abstract:

The Cyclic Extrusion Compression (CEC) is one of the methods of severe plastic deformation (SPD), used for producing nanomaterials. The CEC method allows materials to be deformed to arbitrarily large strains without changing the initial shape of sample. Large hydrostatic compressive stresses are exerted during deformation avoiding sample cracking. Using the CEC method Cu and aluminum alloys nanomaterials were produced. It has been found that, after exerting true strain of about ϕ = 14, only some part of the sample changes into a nanomaterial, while the remainder volume still shows the ultrafine microstructure. The nanometric microstructure is created generally inside the areas of intersecting microbands. Large misorientation has been found between the microbands and the surrounding material, facilitating the formation of nanograin boundaries. The hardness of samples increases with the increase of deformation, however only to a boundary level of about 100 MPa. The stabilization of hardening, above a deformation of about ϕ = 4, suggests the activation of softening processes. Independently to the stabilization of properties, the refinement of nanograins is continued, indicating the development of anomalies in the hardening – grain size relationship.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 114)

Pages:

19-28

Citation:

Online since:

July 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.S. Kumar, H. Van Swygenhoven, S. Suresh: Mechanical Behaviour of Nanocrystalline Metals and Alloys, Acta Materialia, 51 (2003), pp.5743-5774.

DOI: 10.1016/j.actamat.2003.08.032

Google Scholar

[2] A. Rosochowski, L. Olejnik, M. Richert: Metal forming technology for producing bulk nanostructured metals, Proc. Of the 10 th International Conference on Metal Forming, ed. J. Kusiak, P. Hartley, J. Majta, I. Pillinger, M. Pietrzyk, September (2004).

Google Scholar

[3] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk Nanostructured Materials From Severe Plastic Deformation, Progres in Mat. Sci. 45, (2000), pp.103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[4] J. Richert, M. Richert: A New Method for Unlimited Deformation of Metals and Alloys, Aluminium, Vol. 62, 8 (1986), pp.604-607.

Google Scholar

[5] M. Richert: The Effect of Unlimited Cumulation of Large Plastic Strains on the Structure-Softening Processes of 99, 999Al, Materials Science & Engineering A, Vol. A 129, (1990), pp.1-10.

DOI: 10.1016/0921-5093(90)90339-5

Google Scholar

[6] M. Richert; Structural and mechanical results of strain localization in Al99, 992 and AlMg5, in the range of large strains, Zesz. Nauk. AGH, Rozprawy - Monografie, No. 23, (1995) (in Polish).

Google Scholar

[7] M. Richert; The Microstructure of Aluminium at Large Plastic Strains, IX Conference on Electron Microscopy of Solids, A. Czyrska-Filemonowicz at all. (eds). 6-9 May (1996), Kraków-Zakopane, Poland, pp.235-238.

Google Scholar

[8] M. Richert, J. Richert, J. Zasadziński, H. Dybiec; The Boundary Strain Hardening of Aluminium with Unlimited Cumulation of Large Deformation, Z. Metallkde, Vol. 79, 11, (1988), pp.741-745.

DOI: 10.1515/ijmr-1988-791110

Google Scholar

[9] M. Richert, A. Korbel; The Effect of Alloying on the Mechanical Performance and Substructure of Aluminium at Large Strains, Materials Science & Engineering A, A234-236 (1997), pp.908-911.

DOI: 10.1016/s0921-5093(97)00390-0

Google Scholar

[10] M. Richert, N. Hansen, J. Richert, D. Juul Jensen, Q. Liu, A. Godfrey; Formation of Fine Grains in Aluminium Deformed to Large Strains, InŜynieria Materiałowa, No 3 (1998), pp.502-505.

Google Scholar

[11] M. Richert, J. Richert, Effect of Large Plastic Strains Accumulation on Aluminum Structure and Properties", 7 th International Aluminum Extrusion Technology Seminar & Exposition, ET, 2000, Chicago, IL USA May 16-19, (2000).

Google Scholar

[12] M. Richert, J. Richert, Application of cyclic extrusion compression (CEC) method to the production of materials with the unconventional properties" part II, InŜynieria Materiałowa, Nr 2 (121), (2001) 73-79 (in Polish).

Google Scholar

[13] M. Richert, Q. Liu, N. Hansen; Microstructural Evolution Over a Large Strain Range in Aluminium Deformed by Cyclic-Extrusion-Compression, Materials Science & Engineering, A260 (1999) 275-283.

DOI: 10.1016/s0921-5093(98)00988-5

Google Scholar

[14] M. Richert, H. McQueen, J. Richert; Microband Formation in Cyclic Extrusion Compression of Aluminum, Canadian Metal. Quart. Vol. 37 (1998) 449-457.

DOI: 10.1016/s0008-4433(98)00030-5

Google Scholar

[15] M. Richert, H.P. Stuwe, J. Richert, R. Pippan, Ch. Motz Characteristic features of microstructure of AlMg5 deformed to large plastic strains, Mater. Sci. Eng., A301 (2001) 237-243.

DOI: 10.1016/s0921-5093(00)01803-7

Google Scholar

[16] M. Richert, J. Richert, J. Zasadziński, S. Hawryłkiewicz, J. Długopolski, Effect of large deformations on the microstructure of aluminium alloys, Materials Chemistry And Physics, 81 (2003) 528-530.

DOI: 10.1016/s0254-0584(03)00066-x

Google Scholar

[17] M. Richert, J. Richert, J. Zasadziński, S. Hawryłkiewicz, Metallic nanomaterials formed by large plastic strains, InŜynieria Materiałowa, 1, (2003) (in Polish) 21-25.

Google Scholar

[18] M. Richert, H.P. Stuwe, M.J. Zehetbauer, J. Richert, R. Pippan. Ch. Motz, E. Schafler, Work Hardening and microstructure of AlMg6 after severe plastic deformation by cyclic extrusion and compression, Mater. Sci. Eng., A355 (2003) 180-185.

DOI: 10.1016/s0921-5093(03)00046-7

Google Scholar

[19] M. Richert, K.J. Kurzydłowski, Nanocrystalline copper obtained by exertion of unconventional large plastic strains, Archiwum Nauki o Materiałach, t. 25, nr 4 (2003) 561-570 (in Polish).

Google Scholar

[20] M. Richert, S. Boczkal, A. Białek, B. Leszczyńska, Effect of temperature on microstructure stability of aluminium alloys, Archives of Materials Science, Vol. 25, No. 4 (2004) 379 - 384.

Google Scholar

[21] M. Richert, S. Hawryłkiewicz, J. Richert, J. Zasadziński, Perspective of nanomaterials production by cyclic extrusion compression method of exerting unconventional large plastic deformations, Solid State Phenomena, Vols. 101-102 (2005) 17-42.

DOI: 10.4028/www.scientific.net/ssp.101-102.37

Google Scholar

[22] K.J. Kurzydłowski, M. Richert, On the mechanisms of nanograins formation in cold plastic deformation conditions, InŜynieria Materiałowa, 2005 (in press).

Google Scholar

[23] M. Richert, Nanomaterials produced by the methods of severe plastic deformations (SPD), Archives of Materials Science, (2005) (in press).

Google Scholar

[24] J. Richert, Optimal Conditions of Plastic Working of Materials by Cyclic Extrusion Compression Method (CEC) - Part I, InŜynieria Materiałowa, Nr 4 (117), (2001), pp.156-160 (in Polish).

Google Scholar

[25] M. Leonowicz, K.J. Kurzydłowski, Scientific Activity Within the Target Research Project: Metallic, Ceramic and Organic Nanomaterials: Processing-Structure-Properties-Application, InŜynieria Materiałowa, 2 (2003) 50-59.

DOI: 10.4028/www.scientific.net/ssp.94.357

Google Scholar

[26] M. Jurczyk, Nanomaterials - Mechanical Synthesis, Wydawnictwa Politechniki Poznańskiej (2003) (in Polish).

Google Scholar

[27] R.W. Siegel, Productions of Nanocrystalline Materials", Świat Nauki, 2, 40 (1997) (in Polish).

Google Scholar

[28] M. Gleiter, Nanostructured Materials: Basic concepts and Microstructure, Acta Mater. 48, 1-29 (2000).

Google Scholar

[29] P. Niedzielski, J. Grabarczyk, M. Dudek, Nanocrystalline Diamond Layers for Machining Tools, Using to Processing of Like-Wood Materials, InŜynieria Materiałowa, 3 (2000) 124-126 (in Polish).

Google Scholar

[30] K. Lu: Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties, R16 (1996), pp.161-221.

DOI: 10.1016/0927-796x(95)00187-5

Google Scholar

[31] R.Z. Valiev, A.V. Korznikova, R.R. Mulyukov, Structure and properties of ultrafine - grained materials produced by severe plastic deformation, Mater. Sci. Eng. A 168, 141-148 (1998).

DOI: 10.1016/0921-5093(93)90717-s

Google Scholar

[32] O.N. Senkov, F.H. Froes, V.V. Stolyarov, R.Z. Valiev, J. Liu, Microstrucure and Microhardness of an Al-Fe Alloy Subjected to Severe Plastic Deformation and Aging, Nanostructured Materials, Vol. 10, No. 5 (1998) 691-698.

DOI: 10.1016/s0965-9773(98)00107-x

Google Scholar

[33] P.B. Prangnell, J.R. Bowen, A. Gholina, The Formation of Submicron and Nanocrystalline Grain Structures by Severe Deformation", Proc. Of the 22 nd Riso International Symposium on Mat. Sci., "Science of Metastable and Nanocrystalline Alloys Structure, Properties and Modeling, Eds.: A.R. Dinesen, M. Eldrup, D. Juul - Jensen, S. Linderoth, T.B. Pedersen, N.H. Pryds, A. Schroder Pedersen, J.A. Wert, (2001).

Google Scholar

[34] P.L. Sun. P.W. Kao, C.P. Chang, Characteristic of Submicron Grained Structure Formed in Aluminum, by Equal Channel Angular Extrusion, Mat. Sci. Eng. A 283, (2000) 82-85.

DOI: 10.1016/s0921-5093(99)00800-x

Google Scholar

[35] T. Mukai, M. Kawazoe, K. Higashi, Dynamic Mechanical Properties of a Near - Nano Aluminium Alloy Processed by Equal - Channel - Angular - Extrusion, Nanostructured Materials, 10, 5 (1998) 755-765.

DOI: 10.1016/s0965-9773(98)00113-5

Google Scholar

[36] N. Tsuji, Y. Saito, S. Lee, Y. Minamino, ARB (Accumulative Roll-Bonding) and Other New Techniques to Produce Bulk Ultrafine Grained Materials", Proceedings of the Conference "Nanomaterials by Severe Plastic Deformation NANOSPD2, Ed. by M.J. Zehetbauer, R.Z. Valiev , Vienna, Austria, (2002).

DOI: 10.1002/3527602461.ch9a

Google Scholar

[37] C.Y. Barlow, P. Nielsen, N. Hansen, Multilayer Roll Bonded Aluminium Foil: Processing, Microstructure and Flow Stress, Acta Materialia, Vol. 52, 13 (2004) 3967-3972.

DOI: 10.1016/j.actamat.2004.05.012

Google Scholar

[38] I. Brodova, D. Bashlykov, A. Manukhin, I. shirinkina, V. Stolyarov, E. Soshnikova, Thermal Stability of Nanostructure in Rapidly Solidified Al-2%Zr Alloy After Severe Plastic Deformation", Proc. Of the 22 nd Riso International Symposium on Mat. Sci., "Science of Metastable and Nanocrystalline Alloys Structure, Properties and Modeling, Eds.: A.R. Dinesen, M. Eldrup, D. Juul - Jensen, S. Linderoth, T.B. Pedersen, N.H. Pryds, A. Schroder Pedersen, J.A. Wert, (2001).

DOI: 10.1016/s1359-6462(01)00791-6

Google Scholar

[39] M. Richert, S. Boczkal, A. Białek, B. Leszczyńska, Effect of temperature on microstructure stability of aluminium alloys, Archives of Materials Science, Vol. 25, No. 4 (2004) 379 - 384.

Google Scholar

[40] D.G. Morris, M.A. Munoz-Morris, Microstructure of Severely Deformed Al-3Mg and its Evolution During Annealing, Acta Materialia, 50 (2002) 4047-4060.

DOI: 10.1016/s1359-6454(02)00203-3

Google Scholar

[41] R. Valiev, Paradoxes of Severe Plastic Deformation", ", Proceedings of the Conference "Nanomaterials by Severe Plastic Deformation NANOSPD2, Ed. by M.J. Zehetbauer, R.Z. Valiev , Vienna, Austria, (2002) 296-300.

DOI: 10.1002/3527602461.ch3a

Google Scholar

[42] I. Bakonyi, A. Cziraki, Nanocrystalline Forming Ability Of Alloys BY Melt-Quenching, Nanostructured Materials, 11, 1 (1999) 9-16.

DOI: 10.1016/s0965-9773(98)00156-1

Google Scholar

[43] J. Richert, High pressure effect on the Cyclic Extrusion Compression (CEC) process, (in preparation).

Google Scholar

[44] Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, T.G. Langdon, Superplastic Forming at High Strain Rates after Severe Plastic Deformation, Acta Mater, 48 (2000) 3633-3640.

DOI: 10.1016/s1359-6454(00)00182-8

Google Scholar

[45] A. Gholina, P.B. Prangnell, M.V. Markushev, The effect of deformation structures in severely deformed aluminium alloys processed by ECAE, Acta Mater. 48 (2000) 1115-1130.

DOI: 10.1016/s1359-6454(99)00388-2

Google Scholar

[46] P.L. Sun. P.W. Kao, C.P. Chang, Characteristic of submicron grasined structure formed in aluminum by equal channel angular extrusion, Mat. Sci. Eng. A 283 (2000) 82-85.

DOI: 10.1016/s0921-5093(99)00800-x

Google Scholar

[47] M. Richert, K. Chruściel, J. Długopolski, Computer program - KIK - Microstructure analysis.

Google Scholar