Features of Cyclic Extrusion Compression: Method, Structure & Materials Properties

Abstract:

Article Preview

The Cyclic Extrusion Compression (CEC) is one of the methods of severe plastic deformation (SPD), used for producing nanomaterials. The CEC method allows materials to be deformed to arbitrarily large strains without changing the initial shape of sample. Large hydrostatic compressive stresses are exerted during deformation avoiding sample cracking. Using the CEC method Cu and aluminum alloys nanomaterials were produced. It has been found that, after exerting true strain of about ϕ = 14, only some part of the sample changes into a nanomaterial, while the remainder volume still shows the ultrafine microstructure. The nanometric microstructure is created generally inside the areas of intersecting microbands. Large misorientation has been found between the microbands and the surrounding material, facilitating the formation of nanograin boundaries. The hardness of samples increases with the increase of deformation, however only to a boundary level of about 100 MPa. The stabilization of hardening, above a deformation of about ϕ = 4, suggests the activation of softening processes. Independently to the stabilization of properties, the refinement of nanograins is continued, indicating the development of anomalies in the hardening – grain size relationship.

Info:

Periodical:

Solid State Phenomena (Volume 114)

Edited by:

Witold Lojkowski and John R. Blizzard

Pages:

19-28

DOI:

10.4028/www.scientific.net/SSP.114.19

Citation:

M. W. Richert "Features of Cyclic Extrusion Compression: Method, Structure & Materials Properties", Solid State Phenomena, Vol. 114, pp. 19-28, 2006

Online since:

July 2006

Authors:

Export:

Price:

$35.00

[1] K.S. Kumar, H. Van Swygenhoven, S. Suresh: Mechanical Behaviour of Nanocrystalline Metals and Alloys, Acta Materialia, 51 (2003), pp.5743-5774.

[2] A. Rosochowski, L. Olejnik, M. Richert: Metal forming technology for producing bulk nanostructured metals, Proc. Of the 10 th International Conference on Metal Forming, ed. J. Kusiak, P. Hartley, J. Majta, I. Pillinger, M. Pietrzyk, September (2004).

[3] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk Nanostructured Materials From Severe Plastic Deformation, Progres in Mat. Sci. 45, (2000), pp.103-189.

DOI: 10.1016/s0079-6425(99)00007-9

[4] J. Richert, M. Richert: A New Method for Unlimited Deformation of Metals and Alloys, Aluminium, Vol. 62, 8 (1986), pp.604-607.

[5] M. Richert: The Effect of Unlimited Cumulation of Large Plastic Strains on the Structure-Softening Processes of 99, 999Al, Materials Science & Engineering A, Vol. A 129, (1990), pp.1-10.

DOI: 10.1016/0921-5093(90)90339-5

[6] M. Richert; Structural and mechanical results of strain localization in Al99, 992 and AlMg5, in the range of large strains, Zesz. Nauk. AGH, Rozprawy - Monografie, No. 23, (1995) (in Polish).

[7] M. Richert; The Microstructure of Aluminium at Large Plastic Strains, IX Conference on Electron Microscopy of Solids, A. Czyrska-Filemonowicz at all. (eds). 6-9 May (1996), Kraków-Zakopane, Poland, pp.235-238.

[8] M. Richert, J. Richert, J. Zasadziński, H. Dybiec; The Boundary Strain Hardening of Aluminium with Unlimited Cumulation of Large Deformation, Z. Metallkde, Vol. 79, 11, (1988), pp.741-745.

[9] M. Richert, A. Korbel; The Effect of Alloying on the Mechanical Performance and Substructure of Aluminium at Large Strains, Materials Science & Engineering A, A234-236 (1997), pp.908-911.

DOI: 10.1016/s0921-5093(97)00390-0

[10] M. Richert, N. Hansen, J. Richert, D. Juul Jensen, Q. Liu, A. Godfrey; Formation of Fine Grains in Aluminium Deformed to Large Strains, InŜynieria Materiałowa, No 3 (1998), pp.502-505.

[11] M. Richert, J. Richert, Effect of Large Plastic Strains Accumulation on Aluminum Structure and Properties", 7 th International Aluminum Extrusion Technology Seminar & Exposition, ET, 2000, Chicago, IL USA May 16-19, (2000).

[12] M. Richert, J. Richert, Application of cyclic extrusion compression (CEC) method to the production of materials with the unconventional properties" part II, InŜynieria Materiałowa, Nr 2 (121), (2001) 73-79 (in Polish).

[13] M. Richert, Q. Liu, N. Hansen; Microstructural Evolution Over a Large Strain Range in Aluminium Deformed by Cyclic-Extrusion-Compression, Materials Science & Engineering, A260 (1999) 275-283.

DOI: 10.1016/s0921-5093(98)00988-5

[14] M. Richert, H. McQueen, J. Richert; Microband Formation in Cyclic Extrusion Compression of Aluminum, Canadian Metal. Quart. Vol. 37 (1998) 449-457.

DOI: 10.1016/s0008-4433(98)00030-5

[15] M. Richert, H.P. Stuwe, J. Richert, R. Pippan, Ch. Motz Characteristic features of microstructure of AlMg5 deformed to large plastic strains, Mater. Sci. Eng., A301 (2001) 237-243.

DOI: 10.1016/s0921-5093(00)01803-7

[16] M. Richert, J. Richert, J. Zasadziński, S. Hawryłkiewicz, J. Długopolski, Effect of large deformations on the microstructure of aluminium alloys, Materials Chemistry And Physics, 81 (2003) 528-530.

DOI: 10.1016/s0254-0584(03)00066-x

[17] M. Richert, J. Richert, J. Zasadziński, S. Hawryłkiewicz, Metallic nanomaterials formed by large plastic strains, InŜynieria Materiałowa, 1, (2003) (in Polish) 21-25.

[18] M. Richert, H.P. Stuwe, M.J. Zehetbauer, J. Richert, R. Pippan. Ch. Motz, E. Schafler, Work Hardening and microstructure of AlMg6 after severe plastic deformation by cyclic extrusion and compression, Mater. Sci. Eng., A355 (2003) 180-185.

DOI: 10.1016/s0921-5093(03)00046-7

[19] M. Richert, K.J. Kurzydłowski, Nanocrystalline copper obtained by exertion of unconventional large plastic strains, Archiwum Nauki o Materiałach, t. 25, nr 4 (2003) 561-570 (in Polish).

[20] M. Richert, S. Boczkal, A. Białek, B. Leszczyńska, Effect of temperature on microstructure stability of aluminium alloys, Archives of Materials Science, Vol. 25, No. 4 (2004) 379 - 384.

[21] M. Richert, S. Hawryłkiewicz, J. Richert, J. Zasadziński, Perspective of nanomaterials production by cyclic extrusion compression method of exerting unconventional large plastic deformations, Solid State Phenomena, Vols. 101-102 (2005) 17-42.

DOI: 10.4028/www.scientific.net/ssp.101-102.37

[22] K.J. Kurzydłowski, M. Richert, On the mechanisms of nanograins formation in cold plastic deformation conditions, InŜynieria Materiałowa, 2005 (in press).

[23] M. Richert, Nanomaterials produced by the methods of severe plastic deformations (SPD), Archives of Materials Science, (2005) (in press).

[24] J. Richert, Optimal Conditions of Plastic Working of Materials by Cyclic Extrusion Compression Method (CEC) - Part I, InŜynieria Materiałowa, Nr 4 (117), (2001), pp.156-160 (in Polish).

[25] M. Leonowicz, K.J. Kurzydłowski, Scientific Activity Within the Target Research Project: Metallic, Ceramic and Organic Nanomaterials: Processing-Structure-Properties-Application, InŜynieria Materiałowa, 2 (2003) 50-59.

DOI: 10.4028/www.scientific.net/ssp.94.357

[26] M. Jurczyk, Nanomaterials - Mechanical Synthesis, Wydawnictwa Politechniki Poznańskiej (2003) (in Polish).

[27] R.W. Siegel, Productions of Nanocrystalline Materials", Świat Nauki, 2, 40 (1997) (in Polish).

[28] M. Gleiter, Nanostructured Materials: Basic concepts and Microstructure, Acta Mater. 48, 1-29 (2000).

[29] P. Niedzielski, J. Grabarczyk, M. Dudek, Nanocrystalline Diamond Layers for Machining Tools, Using to Processing of Like-Wood Materials, InŜynieria Materiałowa, 3 (2000) 124-126 (in Polish).

[30] K. Lu: Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties, R16 (1996), pp.161-221.

[31] R.Z. Valiev, A.V. Korznikova, R.R. Mulyukov, Structure and properties of ultrafine - grained materials produced by severe plastic deformation, Mater. Sci. Eng. A 168, 141-148 (1998).

DOI: 10.1016/0921-5093(93)90717-s

[32] O.N. Senkov, F.H. Froes, V.V. Stolyarov, R.Z. Valiev, J. Liu, Microstrucure and Microhardness of an Al-Fe Alloy Subjected to Severe Plastic Deformation and Aging, Nanostructured Materials, Vol. 10, No. 5 (1998) 691-698.

DOI: 10.1016/s0965-9773(98)00107-x

[33] P.B. Prangnell, J.R. Bowen, A. Gholina, The Formation of Submicron and Nanocrystalline Grain Structures by Severe Deformation", Proc. Of the 22 nd Riso International Symposium on Mat. Sci., "Science of Metastable and Nanocrystalline Alloys Structure, Properties and Modeling, Eds.: A.R. Dinesen, M. Eldrup, D. Juul - Jensen, S. Linderoth, T.B. Pedersen, N.H. Pryds, A. Schroder Pedersen, J.A. Wert, (2001).

[34] P.L. Sun. P.W. Kao, C.P. Chang, Characteristic of Submicron Grained Structure Formed in Aluminum, by Equal Channel Angular Extrusion, Mat. Sci. Eng. A 283, (2000) 82-85.

DOI: 10.1016/s0921-5093(99)00800-x

[35] T. Mukai, M. Kawazoe, K. Higashi, Dynamic Mechanical Properties of a Near - Nano Aluminium Alloy Processed by Equal - Channel - Angular - Extrusion, Nanostructured Materials, 10, 5 (1998) 755-765.

DOI: 10.1016/s0965-9773(98)00113-5

[36] N. Tsuji, Y. Saito, S. Lee, Y. Minamino, ARB (Accumulative Roll-Bonding) and Other New Techniques to Produce Bulk Ultrafine Grained Materials", Proceedings of the Conference "Nanomaterials by Severe Plastic Deformation NANOSPD2, Ed. by M.J. Zehetbauer, R.Z. Valiev , Vienna, Austria, (2002).

DOI: 10.1002/3527602461.ch9a

[37] C.Y. Barlow, P. Nielsen, N. Hansen, Multilayer Roll Bonded Aluminium Foil: Processing, Microstructure and Flow Stress, Acta Materialia, Vol. 52, 13 (2004) 3967-3972.

DOI: 10.1016/j.actamat.2004.05.012

[38] I. Brodova, D. Bashlykov, A. Manukhin, I. shirinkina, V. Stolyarov, E. Soshnikova, Thermal Stability of Nanostructure in Rapidly Solidified Al-2%Zr Alloy After Severe Plastic Deformation", Proc. Of the 22 nd Riso International Symposium on Mat. Sci., "Science of Metastable and Nanocrystalline Alloys Structure, Properties and Modeling, Eds.: A.R. Dinesen, M. Eldrup, D. Juul - Jensen, S. Linderoth, T.B. Pedersen, N.H. Pryds, A. Schroder Pedersen, J.A. Wert, (2001).

DOI: 10.1016/s1359-6462(01)00791-6

[39] M. Richert, S. Boczkal, A. Białek, B. Leszczyńska, Effect of temperature on microstructure stability of aluminium alloys, Archives of Materials Science, Vol. 25, No. 4 (2004) 379 - 384.

[40] D.G. Morris, M.A. Munoz-Morris, Microstructure of Severely Deformed Al-3Mg and its Evolution During Annealing, Acta Materialia, 50 (2002) 4047-4060.

DOI: 10.1016/s1359-6454(02)00203-3

[41] R. Valiev, Paradoxes of Severe Plastic Deformation", ", Proceedings of the Conference "Nanomaterials by Severe Plastic Deformation NANOSPD2, Ed. by M.J. Zehetbauer, R.Z. Valiev , Vienna, Austria, (2002) 296-300.

DOI: 10.1002/3527602461.ch3a

[42] I. Bakonyi, A. Cziraki, Nanocrystalline Forming Ability Of Alloys BY Melt-Quenching, Nanostructured Materials, 11, 1 (1999) 9-16.

DOI: 10.1016/s0965-9773(98)00156-1

[43] J. Richert, High pressure effect on the Cyclic Extrusion Compression (CEC) process, (in preparation).

[44] Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, T.G. Langdon, Superplastic Forming at High Strain Rates after Severe Plastic Deformation, Acta Mater, 48 (2000) 3633-3640.

DOI: 10.1016/s1359-6454(00)00182-8

[45] A. Gholina, P.B. Prangnell, M.V. Markushev, The effect of deformation structures in severely deformed aluminium alloys processed by ECAE, Acta Mater. 48 (2000) 1115-1130.

DOI: 10.1016/s1359-6454(99)00388-2

[46] P.L. Sun. P.W. Kao, C.P. Chang, Characteristic of submicron grasined structure formed in aluminum by equal channel angular extrusion, Mat. Sci. Eng. A 283 (2000) 82-85.

DOI: 10.1016/s0921-5093(99)00800-x

[47] M. Richert, K. Chruściel, J. Długopolski, Computer program - KIK - Microstructure analysis.

In order to see related information, you need to Login.