Combination of ECAP and Hydrostatic Extrusion for UFG Microstructure Generation in Nickel

Article Preview

Abstract:

An ultra-fine grained microstructure was obtained in high purity nickel by a combination of (a) equal-channel angular pressing (ECAP) and (b) hydrostatic extrusion (HE) with a cumulative true strain of ~11.2. The resulting microstructure was examined by light and TEM microscopy. Mechanical properties have been measured by tensile and hardness tests. It was found that HE of ECAP-ed samples leads to a significant grain size refinement (from 330 to 160nm) and to an increase in microstructural homogeneity. SPD nickel, made by a combination of the ECAP and hydrostatic extrusion methods, has high strength and ductility (i.e.: YS=1120MPa and εf = 11%). The microstructure transformation was accompanied by a strength increase of 78% compared to ECAP alone. The results obtained fit well with the Hall-Petch relationship. A combination of ECAP and HE has achieved much better properties than either single process and show it to be a promising procedure for manufacturing bulk UFG nickel.

You might also be interested in these eBooks

Info:

[1] V. M. Segal: Materials Science and Engineering, A197 (1995), p.157.

Google Scholar

[2] R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov: Progress in Materials Sciece, 45 (2000), p.103.

Google Scholar

[3] N. Krasilnikov, W. Lojkowski, Z. Pakiela and R. Valiev: Solid State Phenomena, 94 (2003), p.51.

Google Scholar

[4] V. V. Stolyarov, R. Lapovok, I. G. Brodova and P. F. Thomson: Materials Science and Engineering, A357 (2003), p.159.

Google Scholar

[5] A. P. Zhilyaev, B. -K. Kim, J. A. Szpunar, M. D. Baro and T. G. Langdon: Materials Science and Engineering, A391 (2005), p.377.

Google Scholar

[6] Yu. Ivanisenko, R. Z. Valiev and H. -J. Fecht: Materials Science and Engineering, A390 (2005), p.159.

Google Scholar

[7] E. Schafler and R. Pippan: Materials Science and Engineering, A387-389 (2004), p.799.

Google Scholar

[8] M. Lewandowska, H. Garbacz, W. Pachla, A. Mazur and K. J. Kurzydlowski: Solid State Phenomena, 101-102 (2005), p.65.

DOI: 10.4028/www.scientific.net/ssp.101-102.65

Google Scholar

[9] M. Lewandowska, H. Garbacz, W. Pachla, A. Mazur and K. J. Kurzydlowski: Materials Science Poland, vol 23 No. 02 (2005), p.279.

Google Scholar

[10] M. Kulczyk, W. Pachla, A. Mazur, R. Diduszko, H. Garbacz, M. Lewandowska, W. Lojkowski and K. J. Kurzydlowski: Materials Science Poland, Accepted (2005).

Google Scholar

[11] N. Krasilnikov, W. Lojkowski, Z. Pakiela and R. Valiev: Materials Science and Engineering, A397 (2005), p.330.

Google Scholar

[12] R. Z. Valiev, R. S. Mishral, J. Grozal and A. K. Mukherjee: Scripta Materialia, 34 (1996), p.1443.

DOI: 10.1016/1359-6462(95)00676-1

Google Scholar

[13] R. Valiev: Nature, 3 (2004), p.511.

Google Scholar

[14] K. J. Hemker and H. Last: Materials Science and Engineering, A319-321 (2001), p.882.

Google Scholar

[15] T. E. Buchhein, D. A. Lavan, J. R. Michael, T. R. Christenson and S. D. Leith: Metall. and Mat. Trans., A, 32A (2002), p.539.

Google Scholar

[16] A. Robertson, U. Erb and G. Palombo: Nanostructured Materials, 12 (1999), p.1035.

Google Scholar

[17] D. J. Young: MRS Bulletin, April (2001), p.331.

Google Scholar

[18] M. P. de Boer and T.M. Mayer: MRS Bullutin, April (2001), p.302.

Google Scholar

[19] P. Coulomb, PWN, Warszawa, (1977).

Google Scholar

[20] Y. Wang, M. Chen, F. Zhou and E. Ma: Nature, 419 (2002), p.912.

Google Scholar

[21] H. Mughrabi, H. W. Höppel, M. Kautz and R. Z. Valiev: Z. Metallkunde, 94 (2003), p.1079.

Google Scholar

[22] X. Zhang, et al.: Acta Mater., 50 (2002), p.4823.

Google Scholar

[23] Y. S. Park, K. H. Chung, N. J. Kim and E. J. Lavernia: Materials Science and Engineering, A374 (2004), p.211.

Google Scholar

[24] K. Neishi, Z. Horita and G. Langdon: Materials Science and Engineering, A325 (2002), p.54.

Google Scholar

[25] L. E. Murr: Scripta Metall. 6 (1972) p.203.

Google Scholar

[26] http: /www. MatWeb. com.

Google Scholar