Hydrogen Relaxation Process in HiPco Carbon Nanotubes Studied by Mechanical Spectroscopy

Article Preview

Abstract:

The first mechanical spectroscopy experiments in HiPco carbon nanotubes from room temperature to 3 K revealed a thermally activated relaxation process at about 25 K for frequencies in the kHz range. The peak is due to the presence of a very mobile species performing about 103 jumps per second at the peak temperature. The activation energy obtained by the peak shift with frequency is Ea = 54.7 meV; the value of the pre-exponential factor of the Arrhenius law for the relaxation time, τ0 = 10-14 s, which is typical of point defect relaxation and suggests that the process is originated by the dynamics of hydrogen or by H complexes. The peak is much broader than a single Debye relaxation process, indicating the presence of intense elastic interactions in the highly disordered bundle structure. There are indications that the relaxation process is governed by a quantum mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 115)

Pages:

163-168

Citation:

Online since:

August 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Züttel, P. Sudan, Ph. Mauron, T. Kiyobayashi, Ch. Emmenegger, L. Schlapbach, Int. J. of Hydrogen Energy, 27, 203 (2002).

DOI: 10.1016/s0360-3199(01)00108-2

Google Scholar

[2] F. Lamari Darkrim, P. Malbrunot, G. P. Tartaglia, Int. J. of Hydrogen Energy, 27, 193 (2002).

Google Scholar

[3] A. Zuttel, Ch. Nutzenadel, P. Sudan, Ph. Mauron, Ch. Emmenegger, S. Rentsch, L. Schlapbach, A. Weidenkaff, T. Kiyobayashi, J. Alloy Compd., 330-332, 676 (2002).

DOI: 10.1016/s0925-8388(01)01659-0

Google Scholar

[4] M. Hirscher, M. Becher, M. Haluska , F. von Zeppelin, X. Chen, U. Dettlaff-Weglikowska, S. Roth, J. Alloy Compd., 356-357, 433 (2003).

DOI: 10.1016/s0925-8388(03)00142-7

Google Scholar

[5] D. G. Narehood, J. V. Pearce, P. C. Eklund, P. E. Sokol, R. E. Lechner, J. Pieper, J. R. D. Copley, J. C. Cook, Phys. Rev. B, 67, 205409 (2003).

Google Scholar

[6] D. G. Narehood, M. K. Kostov, P. C. Eklund, M. W. Cole, P. E. Sokol, Phys. Rev. B, 65, 233401 (2002).

Google Scholar

[7] A. S. Nowick, B. S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, New York, (1972).

Google Scholar

[8] See for example: B. Clerjaud, Physica B, 170, 383 (1991); F. Proix, C. A. Sebenne, M. Cherchour, O. M'hamedi, J. -P. Lacharme, J. Appl. Phys., 64, 898 (1976); A. −K. Malhotra, G. W. Neudeck, Appl. Phys. Lett., 28, 47 (1976).

Google Scholar

[9] G. Cannelli, R. Cantelli, F. Cordero, Phys. Rev. B, 32, 3573 (1985).

Google Scholar

[10] C. P. Flynn, A. M. Stoneham, Phys. Rev. B, 1, 3966 (1970); A. M. Stoneham, J. Phys. F: Metal. Phys., 2, 417 (1972).

Google Scholar

[11] P. E. Zapp, H. K. Birnbaum, Acta Metall., 28, 1523 (1980); H. R. Schober, A. M. Stoneham, Phys. Rev. Lett., 60, 2307 (1988).

Google Scholar