Microstructural Characterization of the Emulsified Cu47Ti33Zr11Ni6Sn2Si1 Alloy Powder

Abstract:

Article Preview

Phase selection and microstructural morphology change of the Cu47Ti33Zr11Ni6Sn2Si1 alloy were investigated through the droplet emulsion technique(DET). The emulsified Cu47Ti33Zr11Ni6Sn2Sil alloy powders showed several different microstructures depending on the amount of undercooling. The amount of undercooling of the powders was monitored by differential thermal analysis and was matched with the microstructures. The phase transition of Cu47Ti33Zr11Ni6Sn2Sil alloy powders according to the increase of undercooling proceeds by the process Cu4Ti3 +CuTi +Cu2Ti +Cu51Zr14 → Cu4Ti3 + CuTi + Cu2Ti + Cu51Zr14 + CuTi2 → Cu2Ti + Cu51Zr14 + CuTi2 → Cu51Zr14 +CuTi2. Specifically, the morphology and scale of the CuTi2 phase were examined by SEM observation, and area fraction measurement using an image analyzer, transmission electron microscopy studies, and microhardness tests showed that the amorphous phase could be synthesized by DET. A microstructure selection map of Cu47Ti33Zr11Ni6Sn2Sil alloy powders for tailored solidification was also suggested.

Info:

Periodical:

Solid State Phenomena (Volume 118)

Edited by:

Jang Hyun Sung, Chan Gyu Lee, Yong Zoo You, Young Kook Lee and Jae Young Kim

Pages:

623-634

DOI:

10.4028/www.scientific.net/SSP.118.623

Citation:

H. S. Kang et al., "Microstructural Characterization of the Emulsified Cu47Ti33Zr11Ni6Sn2Si1 Alloy Powder ", Solid State Phenomena, Vol. 118, pp. 623-634, 2006

Online since:

December 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.