Temperature Dependence of Pore Size Distribution of Highly Crystalline Titanosilicate MCM-41

Article Preview

Abstract:

High crystalline Ti-substituted MCM-41’s in the range of Si/Ti ≥ 30 were synthesized. We have carried out the controlling of the pore size of highly crystalline Ti-substituted MCM-41 simply by varying the synthesis temperature in 100-165 oC range. Depending on the reaction temperature, highly crystalline Ti-substituted MCM-41 with different d100 values in the range of 34.6-55.8 Å while using the same gel mixture (1.0 SiO2 : 0.27 CTABr : 0.19 TMAOH : 0.017 Ti(OEt)4 : 40 H2O) were synthesized. The pore size distribution, the surface area and the wall thickness for Ti-substituted MCM-41 samples by N2 adsorption method were 29.2-35.8 Å, 1140- 959 m2/g and 10.7-28.7 Å, respectively. Ti atoms substituted in MCM-41 were atomically dispersed in the framework of MCM-41, which was investigated by IR and UV/Vis spectrophotometer. The d100 values of Ti-MCM-41 samples of Si/Ti=30 under same reaction have a range of 39.2-53.5 Å.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 119)

Pages:

131-134

Citation:

Online since:

January 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T. -W. Chu, D.H. Olsen, E.W. Sheppard, S.B. McCullen, J.B. Higgins, and J.L. Schlenker: J. Am. Chem. Soc., Vol. 114 (1992), p.10834.

DOI: 10.1021/ja00053a020

Google Scholar

[2] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky: Science, Vol. 279 (1998), p.548.

Google Scholar

[3] (a) O. Franke, J. Rathousky, G.; Schulz-Ekloff, J. Star and A. Zukal: Stud. Surf. Sci. Catal. 84 (1994) 77. (b) M.D. Alba, Z. Luan, and J. Klinowski: J. Phys. Chem., Vol. 100 (1996), p.2178.

Google Scholar

[4] (a) P. Wu and T. Tatsumi: Chem. Mater., Vol. 14 (2002).

Google Scholar

[5] (a) K.M. Reddy, I. Moudrakovski, and A. Sayari: J. Chem. Soc., Chem. Commun. (1994), p.1059. (b) J.S. Reddy and A. Sayari: J. Chem. Soc., Chem. Commun. (1995), p.2231.

DOI: 10.1039/c39940001059

Google Scholar

[6] C. -F. Cheng, H. He, W. Zhou, J. Klinowski, J.A.S. Goncalves, and L.F. Gladden: J. Phys. Chem., Vol. 100 (1996), p.390.

Google Scholar

[7] D.Y. Zhao and D. Goldfarb: J. Chem. Soc., Chem. Commun. (1995), p.875.

Google Scholar

[8] A. Sayari, C. Danuman, I.L. Moudrakovski: Chem. Mater., Vol. 7 (1995), p.813.

Google Scholar

[9] J.Y. Yuan, S.Q. Liu, T.H. Chen, J.Z. Wang, and H.X. Li: J. Chem. Soc., Chem. Commun. (1995), p.973.

Google Scholar

[10] D. Khushalani, A. Kuperman, and G.A. Ozin: Adv. Mater. Vol. 7 (1995), p.842.

Google Scholar

[11] M.R. Boccuti, K.M. Rao, A. Zecchina, G. Leofanti, and G. Petrini: Stud. Surf. Sci. Catal., Vol. 48 (1989). P. 133.

Google Scholar

[12] M.A. Camblor, A. Corma, and J. Perez-Pariente: J. Chem. Soc., Chem. Commun. (1993), p.557.

Google Scholar

[13] D.R.S. Huybrechts, I. Vaeson, H.X. Li, and P.A. Jacobs: Catal. Lett., Vol. 8 (1991), p.237.

Google Scholar

[14] (a) J.S. Reddy and A. Sayari: J. Chem. Soc., Chem. Commun. (1995), p.23.

Google Scholar

[15] N.A. Mazer, G.B. Benedeck, and M.C. Carey: J. Phys. Chem., Vol. 80 (1976), p.1075.

Google Scholar

[16] O. Regev, S. Ezrahi, A. Azerin, E. Wachtel, N. Garti, E.W. Kaler, A. Khan, and Y. Talmon: Langmuir, Vol. 12 (1996), p.668.

DOI: 10.1021/la950505g

Google Scholar