[1]
G.C. Sih, On singular character of thermal stress near a crack tip, J. Appl. Mech., 29(1962), pp.587-589.
DOI: 10.1115/1.3640612
Google Scholar
[2]
J.Z. Zuo and G.C. Sih, Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics, Theoretical and Applied Fracture Mechanics 34(2000), pp.17-33.
DOI: 10.1016/s0167-8442(00)00021-5
Google Scholar
[3]
G.C. Sih, Mechanics of fracture initiation and propagation, Kluwer Academic Publishers, The Netherlands (1991). [4] S.K. Serkov and A.B. Movchan, On crack perturbation in thermoelastic media, International J. Solids and Structures 37(2000), pp.6605-6622.
DOI: 10.1016/s0020-7683(99)00220-6
Google Scholar
[5]
A.S. Kobayashi, R.D. Cherepy and W.C. Kinsel, A numerical procedure for estimating the stress intensity factor for a crack in a finite plate, J. Basic Engineering 86(1964), pp.681-684.
DOI: 10.1115/1.3655920
Google Scholar
[6]
J.V. Vooren, Remarks on an existing numerical method to estimate the stress intensity factor of a straight crack in a finite plate, J. Basic Engineering 89(1967), p.236.
DOI: 10.1115/1.3609559
Google Scholar
[7]
J.C. Newman, An improved method of collocation for the stress analysis of crack plate with various shaped boundaries, NASA TN D-6376(1971).
Google Scholar
[8]
O.L. Bowie, Solution of crack problems by mapping techniques, Methods of analysis and solutions of crack problem, Ed. G.C. Sih, Noordhoff International Publishing, Leyden(1973).
Google Scholar
[9]
M. Isida, Method of Laurent series expansion for internal crack problems, Methods of analysis and solutions of crack problem, Ed. G.C. Sih, Noordhoff International Publishing, Leyden(1973).
DOI: 10.1007/978-94-017-2260-5_2
Google Scholar
[10]
Y.Z. Chen and Y.H. Chen, A mixed boundary problem for a finite internally cracked plate, Engn. Fracture Mechanics(1981), pp.741-751.
DOI: 10.1016/0013-7944(81)90086-2
Google Scholar
[11]
S. Ignaccolo et al., Simplified J estimation methods for cracked cylinders under combined thermal and mechanical loading, Nuclear Engineering and Design 188(1999), pp.129-137.
DOI: 10.1016/s0029-5493(99)00010-2
Google Scholar
[12]
A. Denis and A. Soba, Simulation of pellet-cladding thermomechanical interaction and fission gas release, Nuclear Engineering and Design 223(2003), pp.211-229.
DOI: 10.1016/s0029-5493(02)00390-4
Google Scholar
[13]
P. Duda, J. Taler and E. Roos, Inverse method for temperature and stress monitoring in complex-shaped bodies, Nuclear Engineering and Design 223(2004), pp.331-347.
DOI: 10.1016/j.nucengdes.2003.11.010
Google Scholar
[14]
N.I. Muskhelishvili, Some basic problems of mathematical theory of elasticity, Noordhoff Pub., Groningen(1953).
Google Scholar
[15]
G.C. Sih and E.P. Chen, Fracture analysis of unidirectional composites, J. Composite Mat., Vol. 7(1973), pp.230-244.
Google Scholar
[16]
G.C. Sih, Strain energy density factor applied to mixed mode fracture, Int. J. Fracture, Vol. 10(1974), pp.305-322.
DOI: 10.1007/bf00035493
Google Scholar
[17]
G.R. Irwin, Analysis of stresses and strains near the end of a crack transversing a plate, J. Appl. Mech., Vol. 24(1957), pp.361-364.
DOI: 10.1115/1.4011547
Google Scholar
[18]
G.C. Sih, J. Michopoulos and S.C. Chou, Hygrothermoelasticity, Kluwer Academic Publishers, The Netherlands(1986).
Google Scholar
[19]
M.E. Kipp and G.C. Sih, The strain energy density failure criterion applied to notched elastic solids, Int. J. Solids and Structures 2(1975), pp.153-173.
DOI: 10.1016/0020-7683(75)90050-5
Google Scholar
[20]
N. Sumi and T. Katayama, Thermal stress singularities at tips of a Griffith crack in a finite rectangular plate, Nuclear Engineering and Design 60(1980), pp.389-394.
DOI: 10.1016/0029-5493(80)90304-0
Google Scholar
[21]
Z. Yosibash, Thermal generalized stress intensity factors in 2-D domains, Comput. Methods APPL. Mech. Engrg. 157(1998), pp.365-385
DOI: 10.1016/s0045-7825(97)00246-6
Google Scholar