Atomistic Study of the Strain- and Size-Dependence of Poisson’s Ratio of Single-Walled Carbon Nanotubes

Abstract:

Article Preview

Three armchair single-walled carbon nanotubes (SWCNTs) (7, 7), (12, 12), (17, 17) and three zigzag SWCNTs (12, 0), (16, 0), (20, 0) are investigated in this paper, using the molecular dynamic (MD) method with the second-generation Tersoff-Brenner (TB) potential. The Poisson’s ratio of these nanotubes under tensile and compressive loading is obtained. The effect of the strain and size on the Poisson’s ratio of nanotubes is analyzed systematically, from the viewpoints of the structure and the averaged atomic potential energy of nanotubes. The results show that the Poisson’s ratio of nanotubes decreases as the strain increases. The Poisson’s ratios of nanotubes of larger chiral angle decrease more quickly. For nanotubes of the same chiral angle, the larger the diameters of nanotubes are, the larger their Poisson’s ratios become. Moreover, the Poisson’s ratios of nanotubes of larger diameter are more approaching.

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Edited by:

Chunli BAI, Sishen XIE, Xing ZHU

Pages:

1021-1024

DOI:

10.4028/www.scientific.net/SSP.121-123.1021

Citation:

X. G. Ni et al., "Atomistic Study of the Strain- and Size-Dependence of Poisson’s Ratio of Single-Walled Carbon Nanotubes", Solid State Phenomena, Vols. 121-123, pp. 1021-1024, 2007

Online since:

March 2007

Export:

Price:

$35.00

[1] S. Iijima: Nature Vol. 354, (1991), p.56.

[2] E. Hernandez, C. Goze, P. Bernier, A. Rubio, Phys. Rev. Lett. Vol. 80 (1998), p.4502.

[3] D. Sanchez-Portal, E. Artacho, J.M. Soler, et al.: Phys. Rev. B Vol. 59 (1999), p.12678.

[4] V.N. Popov, V.E. Van Dorena, M. Balkanskib: Solid State Comm. Vol. 114 (2000), p.395.

[5] T. Chang and H. Gao: J. Mech. Phys. Solids Vol. 51 (2003), p.1059.

[6] L.X. Shen and J. Li: Phys. Rev. B Vol. 69 (2004), p.045414.

[7] T. Natsuki, K. Tantrakarn and M. Endo: Appl. Phys. A: Mater. Sci. Proc. Vol. 79 (2004), p.117.

[8] K. Shintani and T. Narita: Surf. Sci. Vol. 532-535 (2003), p.862.

[9] D.W. Brenner, O.A. Shenderova, J.A. Harrison, et al.: J. Phys: Condens. Matter. Vol. 14 (2002), p.783.

[10] W.G. Hoover: Phys. Rev. A Vol. 31 (1985), p.1695.

In order to see related information, you need to Login.