Studies of Energy and Mechanical Properties of Single-Walled Carbon Nanotubes via Higher Order Cauchy Born Rule

Article Preview

Abstract:

Based on the higher order Cauchy-Born rule, a nanoscale finite deformation continuum theory, which links interatomic potentials and atomic microstructure of carbon nanotubes to a constitutive model, is presented for analysis of the mechanics of carbon nanotubes. By using of Tersoff-Brenner potential with two sets of parameters, the energy and Young’s modulus of graphite sheet and single-walled carbon nanotubes are studied based on the theory presented. The findings are in good agreement with the existing experimental and theoretical results.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

1029-1032

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Ijima: Nature Vol. 354 (1991), pp.56-58.

Google Scholar

[2] P. Zhang, Y. Huang, P.H. Geubelle, P.A. Klein, K.C. Hwang: Int. J. Solids Struct. Vol. 39 (2002), pp.3893-3906.

Google Scholar

[3] H. Jiang, P. Zhang, B. Liu, Y. Huang, P.H. Geubelle, H. Gao, K.C. Hwang: Comput. Mater. Sci. Vol. 28 (2003), pp.429-442.

Google Scholar

[4] M. Arroyo, T. Belytschko: J. Mech. Phys. Solids Vol. 50 (2002), p.1941-(1977).

Google Scholar

[5] D.W. Brenner: Phys. Rev. B Vol. 42 (1990), pp.9458-9471.

Google Scholar

[6] M.J. Leamy, P.W. Chung, R. Namburu: Proceedings of the 11th Annual ARL-USMA Technical Symposium November 5 (2003).

Google Scholar

[7] D.H. Robertson, D.W. Brenner, J.W. Mintmire: Phys. Rev. B Vol. 45 (1992), pp.12592-12595.

Google Scholar

[8] M. Arroyo: Finite crystal elasticity for curved single layer lattices: applications to carbon nanotubes. Ph. D Thesis, Northwestern University (2003).

Google Scholar

[9] E. Hernándz, C. Goze, P. Bernier, A. Rubio: Phys. Rev. Lett. Vol. 80 (1998), pp.4502-4505.

Google Scholar

[10] V.N. Popov, V.E. Van Doren, M. Balkanski: Phys. Rev. B Vol. 61(2000), 3078-3084.

Google Scholar

[11] T. C Chang., H.J. Gao: J. Mech. Phys. Solids Vol. 51 (2003), pp.1059-1074.

Google Scholar

[12] J.P. Salvetat, J.M. Bonard, N.H. Thomson, A. J Kulik, L. Forro, W. Benoit, L. Zuppiroli: Appl. Phys. A Vol. 69 (1999), pp.255-260. AP1 AP2 AP1 AP2.

Google Scholar