Size Effect on Glass Transition Temperature of Nanopolymers

Article Preview

Abstract:

A unified model is developed for the finite size effect on the glass transition temperature of polymers Tg(D) where D denotes diameter of particles or thickness of films. In terms of this model, Tg(D) depends on both the size and interface conditions. The predicated results are consistent with the experimental evidences of polystyrene (PS) and poly (methyl methacrylate) (PMMA) films and nanoparticles with different interface situations.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

1317-1320

Citation:

Online since:

March 2007

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Zallen: The Physics of Amorphous Solids (Wiley, New York 1983).

Google Scholar

[2] J. L. Keddie, R. A. L. Jones and R. A. Cory: Europhys. Lett. Vol. 27 (1994) p.59.

Google Scholar

[3] J. L. Keddie, R. A. L. Jones and R. A. Cory: Faraday Discuss. Chem. Soc. Vol. 98 (1994) p.219.

Google Scholar

[4] J. A. Forrest, K. Dalnoki-Veress, J. R. Stevens and J. R. Dutcher: Phys. Rev. Lett. Vol. 77 (1996) p. (2002).

Google Scholar

[5] Q. Jiang; H. X. Shi and J. C. Li: Thin Solid Films Vol. 354 (1999) p.283.

Google Scholar

[6] J. A. Forrest and K. Dalnoki-Veress: Adv. Colloid Interface Sci. Vol. 94 (2001) p.167.

Google Scholar

[7] J. Mattsson, J. A. Forrest and L. Bırjesson: Phys. Rev. E Vol. 62 (2000) p.5187.

Google Scholar

[8] J. A. Forrest, K. Dalnoki-Veress and J. R. Dutcher: Phys. Rev. E Vol. 56 (1997) p.5705.

Google Scholar

[9] D. S. Fryer, P. F. Nealey and J. J. de Pablo: Macromolecules Vol. 33 (2000) p.6439.

Google Scholar

[10] K. Fukao and Y. Miyamoto: Phys. Rev. E, Vol. 61 (2000) p.1743.

Google Scholar

[11] J. H. Zhao, M. Kiene, C. Hu and P. S. Ho: Appl. Phys. Lett. Vol. 77 (2000) p.2843.

Google Scholar

[12] R. S. Tate, D. S. Fryer, S. Pasqualini, M. F. Montague, J. J. de Pablo and P. F. Nealey: J. Chem. Phys. Vol. 115 (2001) p.9982.

Google Scholar

[13] X. Zheng, M. H. Rafailovich, J. Sokolov, Y. Strzhemechny, S. A. Schwarz, B. B. Sauer and M. Rubinstein: Phys. Rev. Lett. Vol. 79 (1997) p.241.

DOI: 10.1103/physrevlett.79.241

Google Scholar

[14] D. S. Fryer, E. D. Peters, E. J. Kim, J. E. Tomaszewski, J. J. Pablo, P. F. Nealey, C. C. White and W. L. Wu: Macromolecules Vol. 34 (2001) p.5627.

Google Scholar

[15] Q. Jiang and X. Y. Lang: Macromol. Rapid Commun. Vol. 25 (2004) p.825.

Google Scholar

[16] O. Prucker, S. Christian, H. Bock, J. Ruhe, C. W. Frank and W. Knoll: Macromol. Chem. Phys. Vol. 199 (1998) p.1435.

Google Scholar

[17] L. Hartmann, W. Gorbatschow, J. Hauwede and F. Kremer: Eur. Phys. J. E Vol. 8 (2002) p.145.

Google Scholar

[18] T. Sasaki, A. Shimizu, T. H. Mourey, C. T. Thurau and M. D. Ediger: J. Chem. Phys. Vol. 119 (2003) p.8730.

Google Scholar

[19] J. S. Sharp and J. A. Forrest: Phys. Rev. Lett. Vol. 91 (2003) p.235701.

Google Scholar

[20] K. Schneider, A. Schönhals and E. Donth: Acta Polymerica Vol. 32 (1981) p.471.

Google Scholar