Investigation on the Crystalline Process of Co-Cu Nanoparticle during the Annealing

Article Preview

Abstract:

This study uses molecular dynamics simulations to investigate the crystalline process of Co-Cu nanoparticles of high and low Co concentrations (5 and 25 %) during the annealing process. The modified many-body tight binding potential is adopted to accurately model the Cu-Cu, Co-Co, and Co-Cu pair inter-atomic interactions. The structural transformations at the upper and lower melting points are observed by the radial distribution function (RDF) and the angle correction function (ACF).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

163-166

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. ' cutiZ ∨ , J. Fabian, and S. Das Sarma, Rev. Mod. Phys. Vol. 76 (2004), P. 323.

Google Scholar

[2] M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazeles, Phys. Rev. Lett. Vol. 61 (1988), P. 2472.

DOI: 10.1103/physrevlett.61.2472

Google Scholar

[3] A.E. Berkowitz, J.R. Mitchell, M.J. Carey, A. P. Young, S. Zhang, F.E. Spada, F.T. Parker, A. Hutten, and G. Thomas, Phys. Rev. Lett. Vol. 68 (1992), P. 3745.

DOI: 10.1103/physrevlett.68.3745

Google Scholar

[4] J. Q. Xiao, J.S. Jiang, and C.L. Chien, Phys. Rev. Lett. Vol. 68 (1992), P. 3749.

Google Scholar

[5] X. Fan, T. Mashimo, X. Huang, T. Kagayama, A. Chiba, K. Koyama, and M. Motokawa, Phys. Rev. B, Vol. 69 (2004), 094432.

Google Scholar

[6] B. J. Hickey, M. A. Howson, S. O. Musa, G. J. Tomka, B. D. Rainford, N. Wiser, J. Magn. Magn. Mater. Vol. 147 (1995), P. 253.

Google Scholar

[7] J. C. Cezar, H. C. N. Tolentino, M. Knobel, Phys. Rev. B, Vol. 68 (2003) , 054404.

Google Scholar

[8] M. Shimono, H. Onodera, Materials Science and Engineering, A304-306 (2001), P. 515-519.

Google Scholar

[9] H. W. Sheng, J. H. He, and E. Ma, Phys. Rev. B, Vol. 65 (2002), P. 184203.

Google Scholar

[10] 3��2UDPXV.

Google Scholar

[11] S. P. Huang, D. S. Mainardi, P. Balbuena, Surface Science, Vol. 545 (2003), P. 163-179.

Google Scholar

[12] J. L. Rodriguez, J. M. Montejano-Carrizales, M. J. Yacaman, Applied Surface Science, Vol. 219 (2003), P. 56-63.

Google Scholar

[13] S. J. Sun, S. P. Ju, Y. C. Lo, and J. S. Lin, J. Appl. Phys. (In press).

Google Scholar

[14] J. R. Childress and C. L. Chien, Phys. Rev. B, Vol. 43 (1991), P. 8089.

Google Scholar

[15] M. P. Allen, and D. J. Tildesley, Computer Simulation of Liquid (Clarendon Press, Oxford, 1991). [16] N. A. Levanov, V. S. Stepanyuk, and W. Hergert, Physical Review B, Vol. 61 (2000), P. 2230.

Google Scholar

[17] F. Cleri, and V. Rosato, Physical Review B, Vol. 48 (1993), P. 22. Table I. Parameters used in tight-binding potential. Parameters ).

Google Scholar

[1] eVA ).

Google Scholar

eVA (eV)ξ p q o 0(A)r Cu 0. 0 0. 086 1. 224 10. 960 2. 278 2. 556 Co -0. 852 0. 139 1. 5247 7. 679 2. 139 2. 378 Co-Cu -1. 905 -0. 049 0. 7356 8. 183 3. 344 2. 405.

Google Scholar

20 40 60 80 100 120 140 160 180 Angle (θ).

Google Scholar

[1] [2] [3] [4] ACF Co concentration, x=05 810K 810K-Co 810K-Cu 910K 910K-Co 910K-Cu.

Google Scholar

20 40 60 80 100 120 140 160 180 Angle (θ).

Google Scholar

[1] [2] [3] [4] ACF Co concentration, x=25 1140K 1140K-co 1140K-cu 1260K 1260K-co 1260K-cu Fig. 1 The variation of potential energy of Cu-Co nanoparticles in annealing process 1. 5 2 2. 5 3 3. 5 4 4. 5 5 5. 5 6 6. 5 7 7. 5 R (Angstroms).

Google Scholar

[2] [4] [6] [8] [10] [12] [14] [16] RDF A.

Google Scholar

[2] 3 4 5 6 7.

Google Scholar

[2] [4] [6] [8] [10] [12] [14] [16] 1260K 1260K-Co 1260K-Cu 1140K 1140K-Co 1140K-Cu Fig. 2 The RDF profiles of Cu-Co nanoparticles at upper and lower melting in annealing process for (a) 5 %; (b) 25 % Co concentration (a) (a) (b) Fig. 3 The ACF profiles of Cu-Co nanoparticles at upper and lower melting in annealing process for (a) 5 %; (b) 25 % Co concentration.

DOI: 10.1016/0042-207x(91)91129-c

Google Scholar

200 400 600 800 1000 1200 1400 1600 1800 2000 Temperature (K) -36000 -34000 -32000 -30000 -28000 -26000 Total Potential Energy (eV) Co concentration x=05 x=25 annealing direction 910K 810K 1260K 1140K 1. 5 2 2. 5 3 3. 5 4 4. 5 5 5. 5 6 6. 5 7 7. 5 R (Angstroms).

Google Scholar

[2] [4] [6] [8] [10] [12] [14] [16] RDF.

Google Scholar

[2] 3 4 5 6 7.

Google Scholar

[2] [4] [6] [8] [10] [12] [14] [16] 910K 910K-Co 910K-Cu 810K 810K-Co 810K-Cu A (b).

Google Scholar