[1]
I. ' cutiZ ∨ , J. Fabian, and S. Das Sarma, Rev. Mod. Phys. Vol. 76 (2004), P. 323.
Google Scholar
[2]
M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazeles, Phys. Rev. Lett. Vol. 61 (1988), P. 2472.
DOI: 10.1103/physrevlett.61.2472
Google Scholar
[3]
A.E. Berkowitz, J.R. Mitchell, M.J. Carey, A. P. Young, S. Zhang, F.E. Spada, F.T. Parker, A. Hutten, and G. Thomas, Phys. Rev. Lett. Vol. 68 (1992), P. 3745.
DOI: 10.1103/physrevlett.68.3745
Google Scholar
[4]
J. Q. Xiao, J.S. Jiang, and C.L. Chien, Phys. Rev. Lett. Vol. 68 (1992), P. 3749.
Google Scholar
[5]
X. Fan, T. Mashimo, X. Huang, T. Kagayama, A. Chiba, K. Koyama, and M. Motokawa, Phys. Rev. B, Vol. 69 (2004), 094432.
Google Scholar
[6]
B. J. Hickey, M. A. Howson, S. O. Musa, G. J. Tomka, B. D. Rainford, N. Wiser, J. Magn. Magn. Mater. Vol. 147 (1995), P. 253.
Google Scholar
[7]
J. C. Cezar, H. C. N. Tolentino, M. Knobel, Phys. Rev. B, Vol. 68 (2003) , 054404.
Google Scholar
[8]
M. Shimono, H. Onodera, Materials Science and Engineering, A304-306 (2001), P. 515-519.
Google Scholar
[9]
H. W. Sheng, J. H. He, and E. Ma, Phys. Rev. B, Vol. 65 (2002), P. 184203.
Google Scholar
[10]
3��2UDPXV.
Google Scholar
[11]
S. P. Huang, D. S. Mainardi, P. Balbuena, Surface Science, Vol. 545 (2003), P. 163-179.
Google Scholar
[12]
J. L. Rodriguez, J. M. Montejano-Carrizales, M. J. Yacaman, Applied Surface Science, Vol. 219 (2003), P. 56-63.
Google Scholar
[13]
S. J. Sun, S. P. Ju, Y. C. Lo, and J. S. Lin, J. Appl. Phys. (In press).
Google Scholar
[14]
J. R. Childress and C. L. Chien, Phys. Rev. B, Vol. 43 (1991), P. 8089.
Google Scholar
[15]
M. P. Allen, and D. J. Tildesley, Computer Simulation of Liquid (Clarendon Press, Oxford, 1991). [16] N. A. Levanov, V. S. Stepanyuk, and W. Hergert, Physical Review B, Vol. 61 (2000), P. 2230.
Google Scholar
[17]
F. Cleri, and V. Rosato, Physical Review B, Vol. 48 (1993), P. 22. Table I. Parameters used in tight-binding potential. Parameters ).
Google Scholar
eVA (eV)ξ p q o 0(A)r Cu 0. 0 0. 086 1. 224 10. 960 2. 278 2. 556 Co -0. 852 0. 139 1. 5247 7. 679 2. 139 2. 378 Co-Cu -1. 905 -0. 049 0. 7356 8. 183 3. 344 2. 405.
Google Scholar
20 40 60 80 100 120 140 160 180 Angle (θ).
Google Scholar
[1] [2] [3] [4] ACF Co concentration, x=05 810K 810K-Co 810K-Cu 910K 910K-Co 910K-Cu.
Google Scholar
20 40 60 80 100 120 140 160 180 Angle (θ).
Google Scholar
[1] [2] [3] [4] ACF Co concentration, x=25 1140K 1140K-co 1140K-cu 1260K 1260K-co 1260K-cu Fig. 1 The variation of potential energy of Cu-Co nanoparticles in annealing process 1. 5 2 2. 5 3 3. 5 4 4. 5 5 5. 5 6 6. 5 7 7. 5 R (Angstroms).
Google Scholar
[2] [4] [6] [8] [10] [12] [14] [16] RDF A.
Google Scholar
[2]
3 4 5 6 7.
Google Scholar
[2] [4] [6] [8] [10] [12] [14] [16] 1260K 1260K-Co 1260K-Cu 1140K 1140K-Co 1140K-Cu Fig. 2 The RDF profiles of Cu-Co nanoparticles at upper and lower melting in annealing process for (a) 5 %; (b) 25 % Co concentration (a) (a) (b) Fig. 3 The ACF profiles of Cu-Co nanoparticles at upper and lower melting in annealing process for (a) 5 %; (b) 25 % Co concentration.
DOI: 10.1016/0042-207x(91)91129-c
Google Scholar
200 400 600 800 1000 1200 1400 1600 1800 2000 Temperature (K) -36000 -34000 -32000 -30000 -28000 -26000 Total Potential Energy (eV) Co concentration x=05 x=25 annealing direction 910K 810K 1260K 1140K 1. 5 2 2. 5 3 3. 5 4 4. 5 5 5. 5 6 6. 5 7 7. 5 R (Angstroms).
Google Scholar
[2] [4] [6] [8] [10] [12] [14] [16] RDF.
Google Scholar
[2]
3 4 5 6 7.
Google Scholar
[2] [4] [6] [8] [10] [12] [14] [16] 910K 910K-Co 910K-Cu 810K 810K-Co 810K-Cu A (b).
Google Scholar