Investigation on the Crystalline Process of Co-Cu Nanoparticle during the Annealing

Abstract:

Article Preview

This study uses molecular dynamics simulations to investigate the crystalline process of Co-Cu nanoparticles of high and low Co concentrations (5 and 25 %) during the annealing process. The modified many-body tight binding potential is adopted to accurately model the Cu-Cu, Co-Co, and Co-Cu pair inter-atomic interactions. The structural transformations at the upper and lower melting points are observed by the radial distribution function (RDF) and the angle correction function (ACF).

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Edited by:

Chunli BAI, Sishen XIE, Xing ZHU

Pages:

163-166

DOI:

10.4028/www.scientific.net/SSP.121-123.163

Citation:

S. J. Sun et al., "Investigation on the Crystalline Process of Co-Cu Nanoparticle during the Annealing", Solid State Phenomena, Vols. 121-123, pp. 163-166, 2007

Online since:

March 2007

Export:

Price:

$35.00

[1] I. ' cutiZ ∨ , J. Fabian, and S. Das Sarma, Rev. Mod. Phys. Vol. 76 (2004), P. 323.

[2] M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazeles, Phys. Rev. Lett. Vol. 61 (1988), P. 2472.

DOI: 10.1103/physrevlett.61.2472

[3] A.E. Berkowitz, J.R. Mitchell, M.J. Carey, A. P. Young, S. Zhang, F.E. Spada, F.T. Parker, A. Hutten, and G. Thomas, Phys. Rev. Lett. Vol. 68 (1992), P. 3745.

[4] J. Q. Xiao, J.S. Jiang, and C.L. Chien, Phys. Rev. Lett. Vol. 68 (1992), P. 3749.

[5] X. Fan, T. Mashimo, X. Huang, T. Kagayama, A. Chiba, K. Koyama, and M. Motokawa, Phys. Rev. B, Vol. 69 (2004), 094432.

[6] B. J. Hickey, M. A. Howson, S. O. Musa, G. J. Tomka, B. D. Rainford, N. Wiser, J. Magn. Magn. Mater. Vol. 147 (1995), P. 253.

[7] J. C. Cezar, H. C. N. Tolentino, M. Knobel, Phys. Rev. B, Vol. 68 (2003) , 054404.

[8] M. Shimono, H. Onodera, Materials Science and Engineering, A304-306 (2001), P. 515-519.

[9] H. W. Sheng, J. H. He, and E. Ma, Phys. Rev. B, Vol. 65 (2002), P. 184203.

[10] 3��2UDPXV.

[11] S. P. Huang, D. S. Mainardi, P. Balbuena, Surface Science, Vol. 545 (2003), P. 163-179.

[12] J. L. Rodriguez, J. M. Montejano-Carrizales, M. J. Yacaman, Applied Surface Science, Vol. 219 (2003), P. 56-63.

[13] S. J. Sun, S. P. Ju, Y. C. Lo, and J. S. Lin, J. Appl. Phys. (In press).

[14] J. R. Childress and C. L. Chien, Phys. Rev. B, Vol. 43 (1991), P. 8089.

[15] M. P. Allen, and D. J. Tildesley, Computer Simulation of Liquid (Clarendon Press, Oxford, 1991). [16] N. A. Levanov, V. S. Stepanyuk, and W. Hergert, Physical Review B, Vol. 61 (2000), P. 2230.

[17] F. Cleri, and V. Rosato, Physical Review B, Vol. 48 (1993), P. 22. Table I. Parameters used in tight-binding potential. Parameters ).

[1] eVA ).

eVA (eV)ξ p q o 0(A)r Cu 0. 0 0. 086 1. 224 10. 960 2. 278 2. 556 Co -0. 852 0. 139 1. 5247 7. 679 2. 139 2. 378 Co-Cu -1. 905 -0. 049 0. 7356 8. 183 3. 344 2. 405.

20 40 60 80 100 120 140 160 180 Angle (θ).

[1] [2] [3] [4] ACF Co concentration, x=05 810K 810K-Co 810K-Cu 910K 910K-Co 910K-Cu.

20 40 60 80 100 120 140 160 180 Angle (θ).

[1] [2] [3] [4] ACF Co concentration, x=25 1140K 1140K-co 1140K-cu 1260K 1260K-co 1260K-cu Fig. 1 The variation of potential energy of Cu-Co nanoparticles in annealing process 1. 5 2 2. 5 3 3. 5 4 4. 5 5 5. 5 6 6. 5 7 7. 5 R (Angstroms).

[2] [4] [6] [8] [10] [12] [14] [16] RDF A.

[2] 3 4 5 6 7.

[2] [4] [6] [8] [10] [12] [14] [16] 1260K 1260K-Co 1260K-Cu 1140K 1140K-Co 1140K-Cu Fig. 2 The RDF profiles of Cu-Co nanoparticles at upper and lower melting in annealing process for (a) 5 %; (b) 25 % Co concentration (a) (a) (b) Fig. 3 The ACF profiles of Cu-Co nanoparticles at upper and lower melting in annealing process for (a) 5 %; (b) 25 % Co concentration.

DOI: 10.1016/0042-207x(91)91129-c

200 400 600 800 1000 1200 1400 1600 1800 2000 Temperature (K) -36000 -34000 -32000 -30000 -28000 -26000 Total Potential Energy (eV) Co concentration x=05 x=25 annealing direction 910K 810K 1260K 1140K 1. 5 2 2. 5 3 3. 5 4 4. 5 5 5. 5 6 6. 5 7 7. 5 R (Angstroms).

[2] [4] [6] [8] [10] [12] [14] [16] RDF.

[2] 3 4 5 6 7.

[2] [4] [6] [8] [10] [12] [14] [16] 910K 910K-Co 910K-Cu 810K 810K-Co 810K-Cu A (b).

In order to see related information, you need to Login.