Large-Scale Synthesis of Bamboo-Like Carbon Nanotubes over Zeolites by Catalytic Decomposition of Acetonitrile

Article Preview

Abstract:

High yield synthesis of bamboo-like multi-walled carbon nanotubes (BCNTs) over a novel zeolite catalyst has been achieved using acetonitrile as a carbon source. The synergism of nickel (Ni) and rare earth oxides (REO) in the zeolites is considered very important for the high activity of the catalysts for the rapid decomposition of acetonitrile and diffusion of carbon. The yield of BCNTs increases with the Ni content and the growth time. The as-grown BCNTs are arranged in the form of flower-like clusters surrounding each zeolite. This CNT-zeolite composite may be regarded as a complex zeolite which will be very useful for the selective absorption, filtration and storage of gas.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

167-170

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima, Nature 354 (1991) 56.

Google Scholar

[2] Y. Saito, Carbon 33 (1995) 979.

Google Scholar

[3] B. Gan, J. Ahn, Q. Zhang, Rusli, S. F. Yoon, J. Yu, Q. F. Huang, K. Chew, V. A. Ligatchev, X. B. Zhang and W. Z. Li, Chem. Phys. Lett. 333 (2001) 23.

Google Scholar

[4] S. Subramoney, R. S. Ruoff, D. C. Lorents and R. Malhotra, Nature 366 (1993) 637.

DOI: 10.1038/366637a0

Google Scholar

[5] Y. Wen, Z. Shen, Carbon 39 (2001) 2369.

Google Scholar

[6] C. J. Lee, J. H. Park, J. Park, Chem. Phys. Lett. 323 (2000) 560.

Google Scholar

[7] X. B. Wang, W. P. Hu, Y. Q. Liu, C. F. Long, Y. Xu, S. Q. Zhou, D. B. Zhu and L. M. Dai, Carbon 39 (2001) 1533.

Google Scholar

[8] M. Reyes-Reyes, N. Grobert, R. Kamalakaran, T. Seeger, D. Golberg, M. Rühle , Y. Bando, H. Terrones, M. Terrones, Chem. Phys. Lett. 396 (2004) 167.

DOI: 10.1016/j.cplett.2004.07.125

Google Scholar

[9] J. F. Geng, C. Singh, D. S. Shephard, M. S. P. Shaffer, B. F. G. Johnson and A. H. Windle, Chem. Comm. (2002) 2666.

Google Scholar

[10] Y. M. Li, W. Kim, Y. G. Zhang, M. Rolandi, D. W. Wang and H. J. Dai, J. Phys. Chem. B 105 (2001) 11424.

Google Scholar

[11] S. S Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. J. Dai, Science 283 (1999) 512.

Google Scholar

[12] G. J. Yu. , J. L. Gong, D. Z. Zhu, T. Yue, S. X. He and Z. Y. Zhu, (unpublished).

Google Scholar

[13] Y. Li, X. B. Zhang, X. Y. Tao, J. M. Xu, W. Z. Huang, J. H. Luo, Z. Q. Luo, T. Li, F. Liu, Y. Bao and H. J. Geise, Carbon 43 (2005) 295.

Google Scholar

[14] A. Kasuya, Y. Sasaki, Y. Saito, K. Kohji and Y. Nishina, Phys. Rev. Lett. 78 (1997) 4434.

Google Scholar

[15] S. Colussi, C. D. Leitenburg, G. Dolcetti and A. Trovarelli, J. Alloy. & Comp. 374 (2004) 387.

Google Scholar

[16] M. F. Yan, Mater. Chem. & Phys. 70 (2001) 242.

Google Scholar

[17] K. Kuwana, H. Endo, K. Saito, D., R. Andrews and E. A. Grulke: Carbon 43 (2005), 253-260.

Google Scholar

[18] S. Helveg, C. López-Cartes, J. Sehested P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen and J. K. Nørskov, Nature 427 (2004) 426.

DOI: 10.1038/nature02278

Google Scholar