Controlled Synthesis of BaF2 Nanorods via Hydrothermal Microemulsion Method

Article Preview

Abstract:

BaF2 nanorods were synthesized by hydrothermal microemulsion method using sodium fluoride (NaF) and barium chloride (BaCl2) as the raw materials. The as-prepared products were characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The results showed that the products were composed of BaF2 nanorods with diameters of 18-62 nm and lengths up to 1μm. A directed aggregation growth process mediated by the microemulsion droplet building blocks is proposed for the formation of BaF2 nanorods. Further work is in progress to evaluate the possibility of synthesizing other fluoride 1D nanostructures using a similar method.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

441-444

Citation:

Online since:

March 2007

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wang, Z. Deng, Y. Li: Mater. Res. Bull. Vol. 37 (2002), p.495.

Google Scholar

[2] M. Chen, Y. Xie, Z. Yao, Y. Qian and G. Zhou: Mater. Res. Bull. Vol. 37 (2002), p.247.

Google Scholar

[3] L. Manna, E. C. Scher and A. P. Alivisatos: J. Am. Chem. Soc. Vol. 122(2000), p.12700.

Google Scholar

[4] D. Yu, D. Wang, Z. Meng, J. Lu and Y. Qian: J. Mater. Chem. Vol. 12(2002), p.403.

Google Scholar

[5] R. Singh, S. Sinha, P. Chou, N.J. Hsu and F. Radpour: J. Appl. Phys. Vol. 66(1989), p.6179.

Google Scholar

[6] A.J. Wojtowicz: Nucl. Instrum. Methods A. Vol. 486(2002), p.201.

Google Scholar

[7] C. M. Bender, J. M. Burlitch: Chem. Mater. Vol. 12(2000), p. (1969).

Google Scholar

[8] J. W. Stouwdam, F. C. J. M. van Veggel: Nano Lett. Vol. 2(2002), p.733.

Google Scholar

[9] X. M. Sun, Y. D. Li: Chem. Commun. 2003, p.1768.

Google Scholar

[10] M. Schwuger, K. Stickdom and R. Schomacker: Chem. Rev. Vol. 95(1995), p.849.

Google Scholar

[11] L. M. Gan, B. Liu, C. H. Chew, S. J. Xu, S. J. Chua and G. L. Loy: Langmuir. Vol. 13(1997), p.6427.

Google Scholar

[12] C. Tojo, M. C. Blanco, F. Rivadulla and M. A. Lopez-Quintela: Langmuir. Vol. 13(1997), p. (1970).

Google Scholar

[13] M. Giustini, G. Palazzo, G. Colafemmina and M. D. Monica: J. Phys. Chem. Vol. 100(1996), p.3190.

Google Scholar

[14] S.J. Xu, S.J. Chua, B. Liu, L. M. Gan and C. H. Chew: Appl. Phys. Lett. Vol. 73(1998), p.478.

Google Scholar

[15] W.W. So, J.S. Jang, Y.W. Rhee and K. J. Kim: J. Colloid Interface Sci. Vol. 237(2001), p.136.

Google Scholar

[16] B. Liu, G.Q. Xu, L.M. Gan, C. H. Chew, W. S. Li and Z. X. Shen: J. Appl. Phys. Vol. 89(2001), p.1059.

Google Scholar

[17] S. J. Xu, S.J. Chua, B. Liu, L. M. Gan, C. H. Chew and G. Q. Xu: Appl. Phys. Lett. Vol. 73(1998), p.478.

Google Scholar