Preparation of Nano-Sized Silver Oxide in the Nanoporous VSB-1 Crystal

Article Preview

Abstract:

Ultra-small silver oxide was synthesized using the novel nanoporous nickel phosphate VSB-1 as the template by a simple method under mild experimental conditions. The UV-vis spectra of the as-synthesized silver oxide showed a large blue shift of ca. 200 nm comparing with that of the bulk Ag2O and which may come from the confinement of the pore size. The intensities of the XRD diffraction peaks of the host after assembly decreased along with the increase the concentration of AgNO3 solution used.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

453-456

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. S. Peercy, Nature, Vol. 406 (2000), p.1023.

Google Scholar

[2] A. P. Alivisatos, Science Vol. 271 (1996), p.933.

Google Scholar

[3] L. A. Peyser, A. E. Vinson, A. P. Bartko, R. M. Dickson, Science Vol. 291 (2001), p.103.

Google Scholar

[4] C. R. Martin, Science Vol. 266 (1994), p. (1961).

Google Scholar

[5] A. T. Bell, Science Vol. 299 (2003), p.1688.

Google Scholar

[6] S. Gangopadhyay, G. C. Hadjipanyis, B. Dale, C. M. Sorenson, K. J. Klabunde, V. Papaefthymiou, A. Kosikas, Phys. Rev. B Vol. 45 (1992), p.9778.

Google Scholar

[7] A. Fojtik, H. Weller, U. Koch, A. Henglein, Ber. Bunsenges. Phys. Chem. Vol. 88 (1984), p.969.

Google Scholar

[8] P. Buffat, J. P. Borel, Phys. Rev. A Vol. 13 (1976), p.2287.

Google Scholar

[9] W. Tremel, Angew. Chem., Int. Ed., Vol. 38 (1999), p.2175.

Google Scholar

[10] M. L. Steigerwald, L. E. Brus, Acc. Chem. Res. Vol. 23 (1990), p.183.

Google Scholar

[11] L. E. Brus, J. Chem. Phys. Vol. 80 (1984), p.4403.

Google Scholar

[12] R. Rosetti, R. Hull, J. M. Gibson, L. E. Brus, J. Chem. Phys. Vol. 83 (1985), p.1406.

Google Scholar

[13] X. Y. Zhang, X. Y. Pan, Q. F. Zhang, B. X. Xu, H. B. Jiang, C. L. Liu, Q. H. Gong, J. L. Wu, Acta Phys. Chim. Sin., Vol. 19 (2003), p.203.

Google Scholar

[14] N. E. Bogdanchikova, V. P. Petranovskii, R. Machorro, Y. Sugi, V. M. Soto and S. Fuentes, Appl. Surf. Sci., Vol. 150 (1999), p.58.

Google Scholar

[15] L. Armelao, R. Bertoncello, E. Cattaruzza, S. Gialanella, S. Gross, G. Mattei, P. Mazzoldi, E. Tondello, J. Mater. Chem., Vol. 12 (2002), p.2401.

DOI: 10.1039/b203539c

Google Scholar

[16] J. E. Readman, P. D. Barker, I. Gameson, J. A. Hriljac, W. Z. Zhou, P. P. Edwards, P. A. Anderson, Chem. Commun., (2004), p.736.

DOI: 10.1039/b400166d

Google Scholar

[17] S. Besson, T. Gacoin, C. Ricolleau and J. P. Boilot, Chem. Commun., (2003), p.360.

Google Scholar

[18] N. Guillou, Q. Gao, M. Nogues, R. E. Morris, M. Hervieu, G. Ferey, A. K. Cheetham, C. R. Acad. Sci. Paris Vol. 2 (1999), p.387.

Google Scholar

[19] J.S. Chang, S.E. Park, Q. Gao, G. Ferey, A. K. Cheetham, Chem. Commun. (2002), p.859.

Google Scholar

[20] Z. Chen, Q. Gao, C. Wu, M. Ruan, J. Shi, Chem. Commun. (2004), p. (1998).

Google Scholar

[21] Z. Zhang, S. Dai, X. Fan, D. A. Bloom, S. J. Pennycook, Y. Wei, J. Phys. Chem. B Vol. 105 (2001), p.6755.

Google Scholar