The Ballistic Electron Emission Microscopy in the Characterization of Quantum Dots

Abstract:

Article Preview

Ballistic electron emission microscopy (BEEM) is a new method by apply the spatial resolution capabilities of the scanning tunneling microscope (STM) to investigate electron transport properties in the quantum dots. This method requires three terminals: a sharp tip to inject electrons, a conductive layer and a semiconductor substrate. The transport-related properties of the sample can be obtained by using the characteristic of the injected and collected electrons. In this paper proposed a BEEM model for the silicon quantum dots (Si-QDs) on SiO2 layer prepared by LPCVD technique. SiO2 layer was thermally grown on p-type Si (100) wafer in dry O2 atmosphere and a thin gold layer cap used to provide a conductive layer on top of the Si-QDs for the BEEM characterization.

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Edited by:

Chunli BAI, Sishen XIE, Xing ZHU

Pages:

529-532

DOI:

10.4028/www.scientific.net/SSP.121-123.529

Citation:

S.D. Hutagalung et al., "The Ballistic Electron Emission Microscopy in the Characterization of Quantum Dots", Solid State Phenomena, Vols. 121-123, pp. 529-532, 2007

Online since:

March 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.