The Ballistic Electron Emission Microscopy in the Characterization of Quantum Dots

Article Preview

Abstract:

Ballistic electron emission microscopy (BEEM) is a new method by apply the spatial resolution capabilities of the scanning tunneling microscope (STM) to investigate electron transport properties in the quantum dots. This method requires three terminals: a sharp tip to inject electrons, a conductive layer and a semiconductor substrate. The transport-related properties of the sample can be obtained by using the characteristic of the injected and collected electrons. In this paper proposed a BEEM model for the silicon quantum dots (Si-QDs) on SiO2 layer prepared by LPCVD technique. SiO2 layer was thermally grown on p-type Si (100) wafer in dry O2 atmosphere and a thin gold layer cap used to provide a conductive layer on top of the Si-QDs for the BEEM characterization.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

529-532

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.J. Kaiser and L.D. Bell: Phys. Rev. Lett. 60 (1988), p.1406.

Google Scholar

[2] L.D. Bell and W.J. Kaiser: Phys. Rev. Lett. 61 (1988), p.2368.

Google Scholar

[3] V. Narayamurti and M. Kochevnikov: Phys. Rep. 349 (2001), p.447.

Google Scholar

[4] W.J. Kaiser, M.H. Hecht, L.D. Bell, F.J. Grunthaner, J.J. Liu and L.C. Davis: Phys. Rev. B 48 (1993), p.18324.

Google Scholar

[5] H. Siringhaus, E.Y. Lee and H. von Kanel: Phys. Rev. Lett. 73 (1994), p.577.

Google Scholar

[6] R. Ludeke, A. Bauer and E. Cartier: J. Vac. Sci. Technol. B 13 (1995), p.1830.

Google Scholar

[7] B. Kaczer, Z. Meng and J.P. Pelz: Phys. Rev. Lett. 77 (1996), p.91.

Google Scholar

[8] R. Ludeke: IBM J. Res. Develop. 44 (2000), p.517.

Google Scholar

[9] X.C. Cheng, D.A. Collins and T.C. McGill: J. Vac. Sci. Technol. A 15 (1997), p. (2063).

Google Scholar

[10] T. Sajoto, J.J. O'Shea, S. Bhargava, D. Leonard, M.A. Chin and V. Narayanamurti: Phys. Rev. Lett. 74 (1995), p.3427.

Google Scholar

[11] D. Rakoczy, R. Heer, G. Strasser and J. Smoliner: Physica E 16 (2003), p.129.

Google Scholar

[12] H. von Kanel and T. Meyer: Ultramicroscopy 73 (1998), pp.175-183.

Google Scholar

[13] M. Prietsch: Phys. Rep. 253 (1995), p.163.

Google Scholar

[14] L.D. Bell and W.J. Kaiser: Annu. Rev. Mater. Sci. 26 (1996), p.189.

Google Scholar

[15] D. Rakoczy, G. Strasser and J. Smoliner: Physica B-Cond. Matt. 314 (2002), p.81.

Google Scholar

[16] P.L. de Andres, F.J. Garcia-Vidal, K. Reuter and F. Flores: Prog. Surf. Sci. 66 (2001), p.3.

Google Scholar

[17] M. Prietsch and R. Ludeke: Phys. Rev. Lett. 66 (1991), p.2511.

Google Scholar

[18] M. Ke, D.I. Westwood, C.C. Matthai, B.E. Richardson and R.H. William: Phys. Rev. B 53 (1996), p.4845.

Google Scholar

[19] C.A. Ventrice, Jr., V.P. LaBella, G. Ramaswamy, H.P. Yu and L.J. Schowalter: Phys. Rev. B 53 (1996), p.3952.

Google Scholar

[20] M.E. Rubin, G. Medeiros-Ribeiro, J.J. O'Shea, M.A. Chin, E.Y. Lee, P.M. Petroff and V. Narayanamurti: Phys. Rev. Lett. 74 (1995), p.3427.

Google Scholar

[21] A.T. Tilke, F.C. Simmel, R.H. Blick, H. Lorenz and J.P. Kotthaus: Prog. Quant. Electron. 25 (2001), p.97.

Google Scholar

[22] F. Mazen, T. Baron, G. Bremond, J.M. Hartmann and M.N. Semeria: Mater. Sci. Eng. B 101 (2003), p.164.

Google Scholar

[23] C.V. Reddy, V. Narayanamurti, J.H. Ryou, U. Chowdhury and R.D. Dupuis: Appl. Phys. Lett. 76 (2000), p.1437.

Google Scholar