SAMs-Drected Metallization and Its Application in Fabrication of Core-Shell Nanocomposites

Article Preview

Abstract:

Molecular assembly technology has attracted much research attention due to its flexible applications in modulation of surface property and construction of nanostructures and devices. Herein, a well-defined surface metallization technique has been achieved via anchoring electroless catalysts onto substrates’ surfaces with the pendant active groups of self-assembled monolayers. This method affords a means to control surface functionality at molecular level and has advantages over the conventional Sn-Pd methods, such as convenient operation, good reproducibility, increased longevity of the activated initiator and improved adhesion of metal deposition to substrates. Therefore, it has great significance in the fields of developing bottom-up combined micro/nano-fabrication technique. This metallization process has been successfully performed on hollow ceramic particles to fabricate light-weighted core-shell functional materials.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

731-734

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.M. Whitesides and B. Grzybowski. Self-assembly at all scales. Science. Vol. 295 (2002), p.2418.

DOI: 10.1126/science.1070821

Google Scholar

[2] S. Brandow, M.S. Chen, R. Aggarwal, C.S. Dulcey, J.M. Calvert and W. J Derssick. Langmuir. Vol. 15 (1999), p.5429.

Google Scholar

[3] A. Ulman. Chem. Rev. Vol. 96 (1996), p.1533.

Google Scholar

[4] W.J. Dressick, C.S. Dulcey, J.H. Jr. Gorger, G.S. Calabrese, J.M. Calvert, J. Electrochem. Soc. 141 (1994) 210.

Google Scholar

[5] C.D. Zangmeister and R.D. van Zee. Langmuir. Vol. 19 (2003), p.8065.

Google Scholar

[6] L. Huang, L.N. Xu, H.Q. Zhang and N. Gu. Chem. Commun. Vol, (2002), p.72.

Google Scholar

[7] L. Huang, L.N. Xu, H.Q. Zhang and N. Gu. Chin. Chem. Lett., Vol, 13 (2002), p.163.

Google Scholar

[8] G.W. Wen, Z.X. Guo and C.K.L. Davies, Scripta Mater. Vol. 43(2000), p.307.

Google Scholar

[9] W.S. Chung, S.Y. Chang and S.J. Lin. Plating and Surf. Finishing Vol. 83 (1996), p.68.

Google Scholar

[10] C.A. Leon and R.A.L. Drew. J. Mater. Sci. Vol. 35 (2000), p.4763.

Google Scholar

[11] S.Y. Chang, J.H. Lin, S.J. Lin and T.Z. Kattamis. Metallur. & Mater. Trans. A Vol. 30 (1999), p.1119.

Google Scholar

[12] O.A. Harizanov, P.L. Stefchev, A. Iossifova, Mater. Lett. Vol. 33 (1998), p.297.

Google Scholar

[13] P.B. Joshi, N.S.S. Murti, V.L. Gadgeel, V.K. Kaushik and P. Ramakrishnan. J. Mater. Sci. Lett. Vol. 14 (1995), p.1099.

Google Scholar

[14] S. Oldenburg, R.D. Averitt, S. Wescott and N.J. Halas. Chem. Phys. Lett. Vol. 288 (1998), p.243.

Google Scholar

[15] L. Xu, J.H. Liao, L. Huang, N. Gu, H. Q Zhang and J.Z. Liu. Appl. Surf. Sci., Vol. 211(2003), p.184.

Google Scholar