[1]
Cui, Y. and C.M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science, 2001. 291(5505): pp.851-853.
DOI: 10.1126/science.291.5505.851
Google Scholar
[2]
Duan, X.F., et al., Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001. 409(6816): pp.66-69.
DOI: 10.1038/35051047
Google Scholar
[3]
Huang, Y., et al., Logic gates and computation from assembled nanowire building blocks. Science, 2001. 294(5545): pp.1313-1317.
DOI: 10.1126/science.1066192
Google Scholar
[4]
Samuelson, L., Self-forming nanoscale devices. Materials Today, 2003. 6(10): pp.22-31.
Google Scholar
[5]
Shan, Y.H., et al., From Si source gas directly to positioned, electrically contacted Si nanowires: The self-assembling grow-in-place, approach. Nano Letters, 2004. 4(11): p.2085-(2089).
DOI: 10.1021/nl048901j
Google Scholar
[6]
Piscanec, S., et al., Raman spectroscopy of silicon nanowires. Physical Review B, 2003. 68(24): p.241312(R).
Google Scholar
[7]
Gupta, R., et al., Laser-induced Fano resonance scattering in silicon nanowires. Nano Letters, 2003. 3(5): pp.627-631.
DOI: 10.1021/nl0341133
Google Scholar
[8]
Adu, K.W., et al., Confined phonons in Si nanowires. Nano Letters, 2005. 5(3): pp.409-414.
Google Scholar
[9]
Stroscio, M.A., M. Dutta, and ebrary Inc., Phonons in nanostructures. 2001, Cambridge ; New York: Cambridge University Press. xiv, 274.
Google Scholar
[10]
Richter, H., Z.P. Wang, and L. Ley, The one phonon Raman spectrum in microcrystalline silicon. Solid State Communications, 1981. 39,: pp.625-629.
DOI: 10.1016/0038-1098(81)90337-9
Google Scholar
[11]
Campbell, I.H. and P.M. Fauchet, The Effects of Microcrystal Size and Shape on the One Phonon Raman-Spectra of Crystalline Semiconductors. Solid State Communications, 1986. 58(10): pp.739-741.
DOI: 10.1016/0038-1098(86)90513-2
Google Scholar
[12]
Li, B.B., D.P. Yu, and S.L. Zhang, Raman spectral study of silicon nanowires. Physical Review B, 1999. 59(3): pp.1645-1648.
DOI: 10.1103/physrevb.59.1645
Google Scholar
[13]
Wang, R.P., et al., Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects. Physical Review B, 2000. 61(24): pp.16827-16832.
DOI: 10.1103/physrevb.61.16827
Google Scholar
[14]
Adu, K.W., et al., Inhomogeneous Laser Heating and Phonon Confinement in Si Nanowire. submitted to Nano Letters, (2005).
Google Scholar
[15]
Mahan, G.D., et al., Optical phonons in polar semiconductor nanowires. Physical Review B, 2003. 68(7): p.
Google Scholar
[16]
Lin, H.M., et al., Synthesis and characterization of core-shell GaP@GaN and GaN@GaP nanowires. Nano Letters, 2003. 3(4): pp.537-541.
DOI: 10.1021/nl0340125
Google Scholar
[17]
Gupta, R., et al., Surface optical phonons in gallium phosphide nanowires. Nano Letters, 2003. 3(12): pp.1745-1750.
DOI: 10.1021/nl034842i
Google Scholar
[18]
Gupta, R., et al., Surface optical phonions in gallium phosphide nanowires. Nano Letters, 2003. 3(12): pp.1745-1750.
Google Scholar
[19]
Xiong, Q., et al., Raman scattering from surface phonons in rectangular cross-sectional w-ZnS nanowires. Nano Letters, 2004. 4(10): p.1991-(1996).
DOI: 10.1021/nl048720h
Google Scholar
[20]
Morales, A.M. and C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 1998. 279(5348): pp.208-211.
DOI: 10.1126/science.279.5348.208
Google Scholar