Surface Optic Phonons in Cylindrical and Rectangular Cross-Sectional Semiconducting Nanowires

Article Preview

Abstract:

Raman scattering from surface optic (SO) phonons has been observed and identified in cylindrical and rectangular cross-section nanowires with lateral dimensions in the range 20-50 nm and lengths of ~ 10 microns. The position of the SO band is found to depend on both the shape of the wire cross section (i. e., circular or rectangular) and on the dielectric constant of the external medium. The position of the SO band in GaP and ZnS nanowires is in good agreement with a dielectric continuum model that takes the shape of the wire cross section into account. We propose that the symmetry breaking mechanism which activates the Raman sacttering of the SO phonon in our nanowires is a quasi-periodic modulation of the cross-sectional area along the nanowire axis. We suggest this modulation stems from an interesting growth instability associated with vapor-liquid-solid (VLS) growth.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

955-966

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Cui, Y. and C.M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science, 2001. 291(5505): pp.851-853.

DOI: 10.1126/science.291.5505.851

Google Scholar

[2] Duan, X.F., et al., Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001. 409(6816): pp.66-69.

DOI: 10.1038/35051047

Google Scholar

[3] Huang, Y., et al., Logic gates and computation from assembled nanowire building blocks. Science, 2001. 294(5545): pp.1313-1317.

DOI: 10.1126/science.1066192

Google Scholar

[4] Samuelson, L., Self-forming nanoscale devices. Materials Today, 2003. 6(10): pp.22-31.

Google Scholar

[5] Shan, Y.H., et al., From Si source gas directly to positioned, electrically contacted Si nanowires: The self-assembling grow-in-place, approach. Nano Letters, 2004. 4(11): p.2085-(2089).

DOI: 10.1021/nl048901j

Google Scholar

[6] Piscanec, S., et al., Raman spectroscopy of silicon nanowires. Physical Review B, 2003. 68(24): p.241312(R).

Google Scholar

[7] Gupta, R., et al., Laser-induced Fano resonance scattering in silicon nanowires. Nano Letters, 2003. 3(5): pp.627-631.

DOI: 10.1021/nl0341133

Google Scholar

[8] Adu, K.W., et al., Confined phonons in Si nanowires. Nano Letters, 2005. 5(3): pp.409-414.

Google Scholar

[9] Stroscio, M.A., M. Dutta, and ebrary Inc., Phonons in nanostructures. 2001, Cambridge ; New York: Cambridge University Press. xiv, 274.

Google Scholar

[10] Richter, H., Z.P. Wang, and L. Ley, The one phonon Raman spectrum in microcrystalline silicon. Solid State Communications, 1981. 39,: pp.625-629.

DOI: 10.1016/0038-1098(81)90337-9

Google Scholar

[11] Campbell, I.H. and P.M. Fauchet, The Effects of Microcrystal Size and Shape on the One Phonon Raman-Spectra of Crystalline Semiconductors. Solid State Communications, 1986. 58(10): pp.739-741.

DOI: 10.1016/0038-1098(86)90513-2

Google Scholar

[12] Li, B.B., D.P. Yu, and S.L. Zhang, Raman spectral study of silicon nanowires. Physical Review B, 1999. 59(3): pp.1645-1648.

DOI: 10.1103/physrevb.59.1645

Google Scholar

[13] Wang, R.P., et al., Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects. Physical Review B, 2000. 61(24): pp.16827-16832.

DOI: 10.1103/physrevb.61.16827

Google Scholar

[14] Adu, K.W., et al., Inhomogeneous Laser Heating and Phonon Confinement in Si Nanowire. submitted to Nano Letters, (2005).

Google Scholar

[15] Mahan, G.D., et al., Optical phonons in polar semiconductor nanowires. Physical Review B, 2003. 68(7): p.

Google Scholar

[16] Lin, H.M., et al., Synthesis and characterization of core-shell GaP@GaN and GaN@GaP nanowires. Nano Letters, 2003. 3(4): pp.537-541.

DOI: 10.1021/nl0340125

Google Scholar

[17] Gupta, R., et al., Surface optical phonons in gallium phosphide nanowires. Nano Letters, 2003. 3(12): pp.1745-1750.

DOI: 10.1021/nl034842i

Google Scholar

[18] Gupta, R., et al., Surface optical phonions in gallium phosphide nanowires. Nano Letters, 2003. 3(12): pp.1745-1750.

Google Scholar

[19] Xiong, Q., et al., Raman scattering from surface phonons in rectangular cross-sectional w-ZnS nanowires. Nano Letters, 2004. 4(10): p.1991-(1996).

DOI: 10.1021/nl048720h

Google Scholar

[20] Morales, A.M. and C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 1998. 279(5348): pp.208-211.

DOI: 10.1126/science.279.5348.208

Google Scholar