Structural Features and Microwave Properties of Ba0.5Sr0.5TiO3 Films Grown on Sapphire Substrates

Article Preview

Abstract:

The change in dielectric constant of ferroelectric materials as a function of electric field is the key to wide range of microwave application such as tunable filter, impedance matching network, and phase shifter. In this study, ferroelectric Ba0.5Sr0.5TiO3 (BST) films were grown on r-cut sapphire and polycrystalline sapphire (poly-sapphire) substrates by RF sputtering. The results of comprehensive structural diagnostics of the films are correlated with the dielectric constant and dielectric loss of a co-planar BST varactor, measured at a frequency range of 1~3 GHz. Textured BST films approximately 500 nm thick, grown on r-cut sapphire substrates, are characterized by high dielectric constant ≥ 650. However, polycrystalline BST films, grown on poly-sapphire substrates, are less strained, having dielectric constant range of 430 ~ 640.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 124-126)

Pages:

1829-1832

Citation:

Online since:

June 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. S. Grabowski, J. S. Horwitz, and D. B. Chrisey, Ferroelectrics Vol. 116 (1991), p.19.

Google Scholar

[2] J. S. Horwitz, D. B. Chrisey, K. S. Grabowski, and P. E. Leuchtner, Surf. Coat. Technol. Vol. 51 (1992), p.290.

Google Scholar

[3] D. S. Korn and H. D. Wu, Integr. Ferroelectr. Vol 24 (1999), p.215.

Google Scholar

[4] L. Davis and L. G. Rubin, J. Appl. Phys. Vol. 24 (1953), p.1194.

Google Scholar

[5] W. J. Merz, Phys. Rev. Vol. 78 (1950), p.52.

Google Scholar

[6] N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev. Lett. Vol. 80 (1998), p. (1988).

Google Scholar

[7] W. Chang, J. S. Horwitz, A. C. Carter, J. M. Pond, S. W. Kirchoefer, C. M. Gilmore, and D. B. Chrisey, Appl. Phys. Lett. Vol. 74 (1999), p.1033.

DOI: 10.1063/1.123446

Google Scholar

[8] O.G. Vendik, S.P. Zubko, M.A. Nikolskii, and Zh. Tekh. Fiz. Tech. Phys. Vol. 44 (1999), p.4.

Google Scholar

[9] H-C. Li W. Si, A. D. West, and X. X. Xi, Appl. Phys. Lett. Vol. 73 (1988), p.190.

Google Scholar

[10] J. S. Kim, J. S. Choi, B. H. Park, H. J. Choi, J. K. Lee, J. Korean Phys. Soc. Vol. 46 (2005), p.183.

Google Scholar

[11] J. S. Kim, B. H, Park, H. J. Choi, J. K. Lee, J. Korean Phys. Soc. Vol. 45 (2004), p.195.

Google Scholar

[12] W. Chang, C.M. Gilmore, W.J. Kim, J.M. Pond, S.W. Kirchoefer, S.B. Qadri, D.B. Chirsey, and J.S. Horwitz, J. Appl. Phys. Vol. 87 (2000), p.3044.

Google Scholar

[13] S. T. Lee, N. Fujimura, and T. Ito, Jpn. J. Appl. Phys. Vol. 34 (1995), p.5168.

Google Scholar

[14] J. S. Horwitz, W. T. Chang, W Kirn, S. B. Qadri, J. M. Pond, S. W. Kirchoefer, and D. B. Chrisey, J. Electroceram. Vol. 4 (2000).

Google Scholar