Sintering and Oxygen Ionic Conducting Properties of Bi2V0.9Co0.1O5.5-δ Derived from an EDTA-Citrate Precursor

Article Preview

Abstract:

Bi2V0.9Co0.1O5.5-δ with a pure Aurivillius phase was synthesized by a sol-gel method using EDTA and citric as mixed complexing agents. It was found that homogeneous and fine powder (100-200 nm) with a pure Aurivillius phase can be produced by calcining the complex precursor at 450 °C for 1h in air. The sintering properties of Bi2V0.9Co0.1O5.5-δ were investigated in the range of 560-680 °C with respect to relativity density. Sintering at 640 °C was ascertained to be preferred for Bi2V0.9Co0.1O5.5-δ, producing a dense microstructure with uniform grains around 3-5 μm. The Bi2V0.9Co0.1O5.5-δ ceramic exhibits an oxygen ionic conductivity of 1.0×10-1 S·cm-1 at 600 °C. The difference between the activation energies for the ionic conducting in low and high temperature regions is qualitatively interpreted in terms of an order-disorder phase transition. This research demonstrates the advantage of the EDTA-citrate method in preparing Bi2V0.9Co0.1O5.5-δ with respect to the simplicity of synthesis process, desired morphology of synthesized powder, low sintering temperature and superior ionic conducting properties of ceramic specimen.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 124-126)

Pages:

731-734

Citation:

Online since:

June 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.H. Hervoches, M.C. Steil and R. Muccillo: Solid State Sciences Vol 6(2004), p.173.

Google Scholar

[2] M. Alga, A. Ammar, B. Tanouti, A. Outzourhit, F. Mauvy and R. Decourt: J Solid State Chemistry Vol 178(2005), p.2873.

DOI: 10.1016/j.jssc.2005.06.030

Google Scholar

[3] C. Pirovano, M.C. Steil, E. Capoen, G. Nowogrocki and R.N. Vannier: Solid State Ionics Vol. 176(2005), p. (2079).

DOI: 10.1016/j.ssi.2004.06.026

Google Scholar

[4] I. Abrahams, F. Krok and J.A. Nelstrop: Solid State Ionics Vol. 90(1996), p.57.

Google Scholar

[5] J.R. Dygas, M. Malys, F. Krok, W. Wrobel, A. Kozanecka and I. Abrahams: Solid State Ionics Vol 176(2005), p. (2085).

DOI: 10.1016/j.ssi.2004.12.017

Google Scholar

[6] M. Guillodo, J. Fouletier, L. Dessemond and P. Del Gallo: J. European Ceramic Society Vol 21(2001), p.2331.

DOI: 10.1016/s0955-2219(01)00214-x

Google Scholar

[7] A.K. Bhattacharya and K.K. Mallick: Solid State Communication Vol 91(1994), p.357.

Google Scholar

[8] V.V. Zyryanov and N.F. Uvarov: Inorganic Materials Vol 41(2005), p.281.

Google Scholar

[9] F. Krok, I. Abrahams, D. G. Bangobango, W. Bogusz and J. A. G. Nelstrop: Solid State Ionics Vol 86-88(1996), p.261.

DOI: 10.1016/0167-2738(96)00102-6

Google Scholar

[10] F. Krok, I. Abrahams, D. Bangobango, W. Bogusz and J. A. G. Nelstrop: Solid State Ionics Vol 111(1998), p.37.

DOI: 10.1016/s0167-2738(98)00188-x

Google Scholar

[11] W. Wrobel, I. Abrahams, F. Krok, A. Kozanecka, S.C.M. Chan, M. Malys, W. Bogusz and J.R. Dygas: Solid State Ionics Vol. 176(2005), p.1731.

DOI: 10.1016/j.ssi.2005.04.024

Google Scholar