Electronic Structure and Defect States of Transition Metal Doped Rutile TiO2

Article Preview

Abstract:

The electronic structure and defect states of 6.25% transition metal (TM = Fe and Co) doped rutile titanium dioxide were investigated by ab initio ultrasoft pseudopotential plane wave method based on density functional theory. When a Fe or Co atom was substituted for a Ti site of TiO2 lattice, additional unoccupied 3d-states of TM appeared as defect states in band-gap and occupied 3d-states represented metallic behavior (half-filled states).It was found that two occupied defect states and one half-filled defect state were the 3d-states of TM from the calculation of band decomposed charge density. The higher unoccupied states were hybridized with unoccupied oxygen 2p-states and located at the middle of band-gap.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 124-126)

Pages:

787-790

Citation:

Online since:

June 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Choi, A. Termin and M.R. Hoffmann: J. Phys. Chem. Vol. 98 (1994), p.13669.

Google Scholar

[2] R. Asahi, T. Morikawa, T. Ohwaki, A. Aoki and Y. Taga: Science Vol. 293, (2001), p.269.

Google Scholar

[3] B. O'Regan and M. Grätzel: Nature Vol. 353, (1991), p.737.

Google Scholar

[4] M. Anpo and M. Takeuchi: J. Catal. Vol. 216, (2003), p.505.

Google Scholar

[5] H.E. Chao, Y.U. Yun, H.U. Xingfang and A. Larbot: J. European Ceram. Soc. Vol. 23, (2003), p.1457.

Google Scholar

[6] D. Madare, M. Tasca, M. Delibas and G.I. Rusu: Appl. Surf. Sci. Vol. 156, (2000), p.200.

Google Scholar

[7] M.M. Rahman, K.M. Krishna, T. Soga, T. Jimbo and M. Umeno: J. Phys. Chem. Solids Vol. 60, (1999), p.201.

Google Scholar

[8] K.M. Krishna, M. Mosaddeq-ur-Rahman, T. Miki, K.M. Krishna, T. Soga, K. Igarashi, S. Tanemura and M. Umeno: Appl. Surf. Sci. Vol. 113-114, (1997), p.149.

DOI: 10.1016/s0169-4332(96)00873-2

Google Scholar

[9] D.H. Kim, H.S. Hong, S.J. Kim, J.S. Jong and K.S. Lee: J. Alloys and Compounds Vol. 375, (2004), p.259.

Google Scholar

[10] Q.G. Yan, W.Z. Weng, H.L. Wan, H. Toghiani, R.K. Toghani and C.U. Pittman Jr.: Appl. Catal. A Vol. 239, (2003), p.43.

Google Scholar

[11] T. Umebayashi, T. Yamaki, H. Itoh and K. Asai: Appl. Phys. Lett. Vol. 81, (2002) 454.

Google Scholar

[12] W. Kohn and L.J. Sham: Phys. Rev. Vol. 140, (1965), p. A1133.

Google Scholar

[13] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D. J. Singh and C. Fiolhais: Phys. Rev. B Vol. 46, (1992), p.6671.

DOI: 10.1103/physrevb.46.6671

Google Scholar

[14] G. Kresse and J. Hafner: Phys. Rev. B Vol. 47, (1993), p. RC558.

Google Scholar

[15] H.J. Monkhorst and J.D. Pack: Phys Rev. B Vol. 13, (1976), p.5188.

Google Scholar

[16] P.E. Blöchl, O. Jepsen and O.K. Andersen: Phys. Rev B Vol. 49, (1994), p.16223.

Google Scholar

[17] J. Muscat, V. Swamy and N.M. Harrison: Phys Rev. B Vol. 65, (2002), p.224112.

Google Scholar

[18] B. Montanari and N.M. Harrison: Chem. Phys. Lett. Vol. 364, (2002), p.528.

Google Scholar

[19] J. Goniakowski, J.M. Holender, L.N. Kantorovich and M.J. Gillan: Phys. Rev. B Vol. 53, (1996), p.957.

Google Scholar

[20] C. Lee, P. Ghosez and X. Gonze: Phys. Rev. B Vol. 50, (1994), p.13379.

Google Scholar

[21] M. Mattesini, J.S. de Almeida, L. Dubrovinsky, N. Dubrovinskaia, B. Johansson and R. Ahuja: Phys. Rev. B Vol. 70, (2004), p.115101.

Google Scholar

[22] R.M. Martin: Electronic Structure (Cambridge University Press, United Kingdom 2004), p.264.

Google Scholar

[23] K.M. Glassford and J. R, Chelikowsky: Phys. Rev. B Vol. 46, (1992), p.1284.

Google Scholar

[24] D.H. Kim, K.S. Lee, Y. -S. Kim, Y. -C. Chung and S. -J. Kim: J. Am. Ceram. Soc. Vol. 89, (2006), p.515.

Google Scholar