Prediction of Laser Fusion Zone Profile of Lotus-Type Porous Metals by 3D Heat Transfer Analysis

Article Preview

Abstract:

Lotus-type porous metals, whose pores are aligned in one direction by unidirectional solidification, have a unique combination of properties. These are expected as revolutionary engineering materials with anisotropy of the properties. For the industrial use of the lotus-type porous metals, a reliable joining technology is required. We already reported the melting property of a few lotus-type porous metals by laser welding. These results indicated that these materials possessed anisotropy of melting property with the pore direction perpendicular and parallel to the specimen surface, especially remarkable anisotropy was obtained for the copper specimen owing to the difference of the laser energy absorption to the specimen surface. In this report, the three-dimensional heat transfer analyses, which take into account the difference of the laser energy absorption comparing with the anisotropy of thermal conductivity inherent to lotus-type porous metals, were performed by commercial code with user-defined subroutine. Predicted profile of weld fusion zone is in good agreement with the cross-sectional view obtained by experiments.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 127)

Pages:

307-312

Citation:

Online since:

September 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.P. Degischer and B. Kriszt: Handbook of Cellular Metals: Production, Processing, Applications, (Wiley-VCH Verlag GmbH, Weinheim, 2002).

DOI: 10.1002/3527600558

Google Scholar

[2] V.I. Shapovalov: Porous and Cellular Materials for Structural Applications, ed. by D.S. Schwartz, D.S. Shih, A.G. Evans and H.N.G. Wadley, (MRS, Warrendale, USA, 1998), pp.281-290.

Google Scholar

[3] H. Nakajima: Mater. Integration 12 (1999), pp.37-44.

Google Scholar

[4] H. Nakajima: The Production & Tech. 51 (1999), pp.60-62.

Google Scholar

[5] H. Nakajima: Boundary 15 (1999), pp.9-11.

Google Scholar

[6] H. Nakajima: J. High Temp. Mater. 26 (2000), pp.95-100.

Google Scholar

[7] H. Nakajima: Bull. The Iron and Steel Institute of Japan 6 (2001), pp.701-707.

Google Scholar

[8] H. Nakajima, S. K. Hyun, K. Ohashi, K. Ota and K. Murakami: Colloids Surf. A 179 (2001), pp.209-214.

Google Scholar

[9] S.K. Hyun, K. Murakami and H. Nakajima: Mater. Sci. Eng. A 299 (2001), pp.241-248.

Google Scholar

[10] S.K. Hyun and H. Nakajima: Mater. Sci. Eng. A 340 (2003), pp.258-264.

Google Scholar

[11] K. Ota, K. Ohashi and H. Nakajima: Mater. Sci. Eng. A 341 (2003), pp.139-143.

Google Scholar

[12] T. Ogushi, H. Chiba, H. Nakajima and T. Ikeda: J. Appl. Phys., 95 (2004), pp.5843-5847.

Google Scholar

[13] T. Ikeda and H. Nakajima: J. Jpn. Foundry Eng. Soc. 74 (2002), pp.812-816.

Google Scholar

[14] T. Ikeda, H. Hoshiyama and H. Nakajima: J. Jpn. Inst. Light Met. 54 (2004), pp.388-393.

Google Scholar

[15] S.K. Hyun and H. Nakajima: Mater. Trans. 43 (2002), pp.526-531.

Google Scholar

[16] S.K. Hyun, T. Ikeda and H. Nakajima: Sci. and Technol. Adv. Mater. 5 (2004), pp.201-205.

Google Scholar

[17] M. Tane, T. Ichitsubo, H. Nakajima, S.K. Hyun and M. Hirano: Acta Mater. 52 (2004), pp.5195-5201.

Google Scholar

[18] U. Dilthey and M. Kessel: Schweißen und Schneiden, DVS-Berichte 220 (2002), pp.216-218.

Google Scholar

[19] Th. Bölinghaus and W. Bleck: Cellular Metals and Metal Foaming Technology, (MIT-Verlag, 2001), pp.495-500.

Google Scholar

[20] A. G. Pogibenko, V. Y. Konkevich, L. A. Arbuzova and V. I. Ryazantsev: Weld. Int. 15 (2001), pp.312-316.

Google Scholar

[21] T. Bernard, J. Burzer and H. W. Bergmann: J. Mater. Process. Tech. 115 (2001), pp.20-24.

Google Scholar

[22] K. Kitazono, A. Kitajima, E. Sato, J. Matsushita and K. Kuribayashi: Mater. Sci. Eng. A 327 (2002), pp.128-132.

Google Scholar

[23] H. Haferkamp, J. Bunte, D. Herzog and A. Ostendorf: Sci. Technol. Weld. Joining 9 (2004), pp.65-71.

Google Scholar

[24] T. Murakami, K. Nakata, T. Ikeda, H. Nakajima and M. Ushio: Mater. Sci. Eng. A 357 (2003), pp.134-140.

Google Scholar

[25] T. Murakami, T. Tsumura, T. Ikeda, H. Nakajima and K. Nakata: submitted to Mater. Sci. and Eng. A.

Google Scholar

[26] T. Tsumura, T. Murakami, S.K. Hyun, H. Nakajima and K. Nakata: Mater. Sci. Forum Vol. 502 (2005), pp.499-504.

Google Scholar

[27] J. Mazumder and W.M. Steen: J. Appl. Phys., 51 (1980) 941-947.

Google Scholar

[28] J. Goldak, A. Chakravarti and M. Bibby: Metall. Trans. B 15 (1984) 299-305.

Google Scholar

[29] I. Miyamoto, H. Maruo and Y. Arata: Laser Processing: Fundamentals, Applications, and Systems Engineering, SPIE Vol. 668 (1986) 11-18.

Google Scholar

[30] T. Zacharia, S.A. David, J.M. Vitek and T. Devroy: Metall. Trans. A 20 (1989) 957-967.

Google Scholar

[31] P. Michaleris and A. DeBiccari: Weld. J. 76 (1997) 172s-181s.

Google Scholar

[32] G. Yu, K. Masubuchi, T. Maekawa and N.M. Patrikalakis: Transactions of the ASME, J. Manuf. Sci. Eng. 123 (2001) 405-410.

Google Scholar

[33] W.S. Chang and S.J. Na: J. Mater. Process. Tech. 120 (2002) 208-214.

Google Scholar

[34] S.A. Tsirkas, P. Papanikos and Th. Kermanidis: J. Mater. Process. Tech. 134 (2003) 59-69.

Google Scholar

[35] Dictionary of Physics Editors Committee, Dictionary of Physics, reduced-size ed., (Baifukan Co. Ltd., Tokyo, 1984), p.1537.

Google Scholar

[36] E. A. Brandes: Smithells Metal Reference Book, 6th ed., (Butterworths, London, 1983), 17-7.

Google Scholar

[37] Y. Arata: Transactions of JWRI 2 (1973), pp.119-120.

Google Scholar