Reverse Monte Carlo Modeling of Atomic Configuration for Amorphous Materials

Article Preview

Abstract:

Reverse Monte Carlo (RMC) modeling, based on diffraction data, was applied to various kinds of amorphous materials to visualizing the three-dimensional atomic arrangement and to elucidate topological characteristics. For an as-grown amorphous carbon nanocoil, it could be clarified that graphene sheets are winding and the regular ABAB… stacking is lost and the configuration gradually changes to the hexagonal network with great regularity through heat treatment. Voronoi analysis of the RMC model could characterize the atomic configurations for NiZr2 and CuZr2 metallic glasses. The Zr environments are very similar in the two systems, but there are marked differences between the polyhedra around Ni and Cu atoms. The polyhedra around Ni atoms are dominated by prismatic-like polyhedra. In contrast, icosahedron-like polyhedra are preferred for Cu.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 127)

Pages:

51-56

Citation:

Online since:

September 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. L. McGreevy and L. Pusztai, Mol. Simulation, 1 (1988) 359.

Google Scholar

[2] S. Motojima, S. Asakura, T. Kasemura, S. Takeuchi and H. Iwanaga, Carbon 34 (1996) 289.

Google Scholar

[3] S. Motojima, S. Asakuma, M. Hirata, H. Iwanaga, Mat. Sci. & Eng., B34 L9 (1995) L9.

Google Scholar

[4] T. Fukunaga, K. Itoh, T. Kuzuya, Y. Hishikawa and S. Motojima, Trans. Mater. Res. Soc. Japan, 29 (2004) 469.

Google Scholar

[5] K. Itoh, Y. Miyajima, K. Aoki and T. Fukunaga, J. Alloys and Compounds, 376 (2004) 9.

Google Scholar

[6] K. Itoh, T. Sawada, K. Aoki and T. Fukunaga, J. Alloys and Compounds, 392 (2005) 6.

Google Scholar

[7] T. Fukunaga, K. Itoh, S. Orimo and K. Aoki, Mater. Sci. & Eng. B, 108 (2003) 105.

Google Scholar

[8] T. Fukunaga, D. Touya, K. Itoh, T. Otomo, K. Mori, H. Kato and M. Hasegawa, J. Metastable & Nanocrystalline Materials, 24-25 (2005) 217.

DOI: 10.4028/www.scientific.net/jmnm.24-25.217

Google Scholar

[9] T. Fukunaga, K. Itoh, T. Otomo, K. Mori, M. Sugiyama, H. Kato, M. Hasegawa, A. Hirata, Y. Hirotsu and A.C. Hannon, J. Intermetallics, (2005) in press.

DOI: 10.1016/j.intermet.2006.01.006

Google Scholar

[10] T. Fukunaga, K. Itoh, T. Otomo, K. Mori, M. Sugiyama, H. Kato, M. Hasegawa, A. Hirata, Y. Hirotsu and K. Aoki, Physica B, (2005) in press.

DOI: 10.1016/j.physb.2006.05.061

Google Scholar

[11] A. Lee, G. Etherington, C. N. J. Wagner, J. Non-Cryst. Solids 61&62 (1984) 349.

Google Scholar

[12] P.H. Gaskell, A. Saeed, P. Chieux, D.R. Mckenzie, Phys. Rev. Lett., 67 (1991) 1286.

Google Scholar

[13] V.S. Stepanyuk, A. Szasz, A.A. Katsnelson, O.S. Trushin, H. Müller and H. Kirchmayr, J. Non-Cryst. Solids 159 (1993) 80.

DOI: 10.1016/0022-3093(93)91284-a

Google Scholar