Orientation of Interstitials in Clusters in α-Fe: A Comparison between Empirical Potentials

Article Preview

Abstract:

We have addressed two issues concerning the relative stabilities of various orienta- tions of interstitial clusters in iron by making a comprehensive comparison between four recent empirical potentials. First, we have investigated the effect of finite temperature on the com- petition between clusters made of a few dumbbells oriented along h111i or h110i. We show by quasi-harmonic calculations that h111i clusters have much larger vibrational formation en- tropies and that they are therefore stabilized with respect to h110i clusters at high temperature. Second, we have compared the formation energies of loops with several hundred atoms with Burgers vector 1 2 h111i or h100i. The 1 2 h111i loops are found to be always more stable, but the energy differences with h100i loops depend strongly on the potential.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 129)

Pages:

67-74

Citation:

Online since:

November 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.M. Robinson: Phys. Stat. Sol. (a), Vol. 75 (1983), p.243 ; A.E. Ward and S.B. Fischer: J. Nucl. Mat. Vol. 166 (1989), p.227.

Google Scholar

[2] P. Ehrhart, K.H. Robrock and H. R. Schober, in Physics of Radiation Effects in Crystals, edited by R.A. Johnson and A.N. Orlov (Elsevier Amsterdam, 1986), p.63.

Google Scholar

[3] B.L. Eyre and R. Bullough: Philos. Mag. Vol. 12 (1965), p.31.

Google Scholar

[4] J. Marian, B. D. Wirth, and J. M. Perlado: Phys. Rev. Lett. Vol. 88 (2002), p.255507.

Google Scholar

[5] C. Domain and C.S. Becquart: Phys. Rev. B Vol. 65 (2001), p.024103.

Google Scholar

[6] C. -C. Fu, F. Willaime, and P. Ordejon: Phys. Rev. Lett. Vol. 92 (2004), p.175503.

Google Scholar

[7] F. Willaime, C. -C. Fu, M. -C. Marinica, and J. Dalla Torre: Nucl. Inst. Meth. Vol. 228 (2004), p.92.

Google Scholar

[8] G. Ackland, D. Bacon, A. Calder, and T. Harry: Philos. Mag. A Vol. 75 (1997), p.713.

Google Scholar

[9] J. Marian, B. D. Wirth, R. Schaublin, G.R. Odette and J.M. Perlado: J. Nucl. Mater. Vol. 323 (2003), p.181.

Google Scholar

[10] M. I Mendelev, D. J. Srolovitz, G.J. Ackland, D.Y. Sun and M. Asta: Phil. Mag. Vol. 83 (2003), p.3977.

Google Scholar

[11] G J Ackland, M. I. Mendelev, D. J. Srolovitz, S. Han and A. V. Barashev: J. Phys. Cond. Mat. Vol. 16 (2004), p. S2629.

Google Scholar

[12] S. L. Dudarev and P. M. Derlet: J. Phys. Cond. Mat. Vol. 17 (2005), p.7097.

Google Scholar

[13] S. Koltz and M. Barden: Phys. Rev. Lett. Vol. 85 (2000), p.3209.

Google Scholar

[14] J.P. Hirth and J. Loth, Theory of Dislocation, McGraw-Hill, (New York, 1968).

Google Scholar

[15] K. Arakawa, M. Hatanaka, E. Kuramoto, K. Ono and H. Mori: Phys. Rev. Lett. Vol. 96 (2006), p.125506.

Google Scholar