Effect of L21 Ordering on the Martensitic and Intermartensitic Transformations in a Ni-Mn-Ga Shape Memory Alloy

Article Preview

Abstract:

The present work analyses the influence of austenite ordering on a single crystal Ni-Mn- Ga alloy which displays, on cooling, a sequence of martensitic (MT) and intermartensitic (IMT) transformations. The MT and IMT show distinct behaviour after ageing in austenite: while the MT temperatures are not affected by the performed heat treatments, the IMT shifts toward lower temperatures after quenching from increasing temperatures, progressive recovery occurring upon ageing in parent phase. Such evolution can be related to changes in the L21 order degree, in the sense that ordering favours the occurrence of the intermartensitic transformation, while it does not affect noticeably the forward and reverse martensitic transformation temperatures. The closeness of the free energies of the different martensite structures allows to explain this behaviour.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 130)

Pages:

127-134

Citation:

Online since:

December 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Kakeshita and K. Ullakko: MRS Bull 27 (2002) p.105.

Google Scholar

[2] R. Tickle, R.D. James, T. Shield, M. Wuttig and V.V. Kokorin: IEEE Trans Magn 35 (1999) p.4301.

DOI: 10.1109/20.799080

Google Scholar

[3] J. Pons, V.A. Chernenko, R. Santamarta and E. Cesari: Acta Mater 48 (2000) p.3027.

Google Scholar

[4] J. Pons, R. Santamarta, V.A. Chernenko and E. Cesari: J Appl Phys 97 (2005) p.083516.

Google Scholar

[5] J. Pons, V.A. Chernenko, E. Cesari and V.A. L'vov: J Phys IV Paris 112 (2003) p.939.

Google Scholar

[6] O. Heczko and K. Ullakko: IEEE Trans Magn 37 (2001) p.2672.

Google Scholar

[7] L. Straka, O. Heczko and N. Lanska: IEEE Trans Magn 38 (2002) p.2835.

Google Scholar

[8] W.H. Wang, Z.H. Liu, J. Zhang, J.L. Chen, G.H. Wu and W.S. Zhan: Phys Rev B 66 (2002) p.052411.

Google Scholar

[9] C. Seguí, V.A. Chernenko, J. Pons, E. Cesari, V. Khovailo and T. Takagi: Acta Mater 53 (2005) p.111.

DOI: 10.1016/j.actamat.2004.09.008

Google Scholar

[10] V.A. Chernenko, C. Seguí, E. Cesari, J. Pons and V.V. Kokorin: Phys Rev B 57 (1998) p.2659.

Google Scholar

[11] Y. Xin, Y. Li, L. Chai and H. Xu: Scripta Mater 54 (2006) p.1139.

Google Scholar

[12] C. Seguí , E. Cesari, J. Font, J. Muntasell and V.A. Chernenko: Scripta Mater 53 (2005) p.315.

DOI: 10.1016/j.scriptamat.2005.04.009

Google Scholar

[13] V.V. Khovailo, R. Kainuma, T. Abe, K. Oikawa and T. Takagi: Scripta Mater 51 (2004) p.13.

Google Scholar

[14] E. Cesari, V.A. Chernenko, V.V. Kokorin, J. Pons and C. Seguí: Acta Mater 45 (1997) p.999.

Google Scholar

[15] R.W. Overholser, M. Wuttig and D.A. Neumann: Scripta Mater 40 (1999) p.1095.

Google Scholar

[16] K. Tsuchiya, D. Ohtoyo, M. Umemoto and H. Ohtsuka: Trans Mater Res Soc Jpn 25 (2000) p.521.

Google Scholar

[17] R. Santamarta, E. Cesari, J. Font, J. Muntasell, J. Pons and J. Dutkiewicz: Scripta Mater 5 (2006) p. (1985).

DOI: 10.1016/j.scriptamat.2006.03.018

Google Scholar

[18] K. Oikawa, T. Omori, R. Kainuma and K. Ishida: J Magn Magn Mat Vol. 272-276 (2004) p. (2043).

Google Scholar

[19] O. Södeberg, A. Sozinov, N. Lanska, Y. Ge, V.K. Lindroos and S.P. Hannula: Mat Sci & Eng A Vol. 438-440 (2006) p.957.

Google Scholar

[20] C. Seguí, J. Pons and E. Cesari: Acta Mater (2007), in press.

Google Scholar