Influence of Cavitation Intensity on the Relative Cavitation Resistance of Laser Processed C45 Carbon Steel

Article Preview

Abstract:

This work presents investigations of relative cavitation resistance of carbon steel (C45) at the initial stage of erosion, after melting its surface by 6 kW CO2 laser beam. The research work was carried out on the rotating disk facility. Three areas were determined on the surface of investigated sample. Each area was eroded with different intensity. The procedures were elaborated for calculation of resistance of processed surface to plastic deformation under cavitation loading and of relative intensity of cavitation using image analysis of monochromatic picture of eroded surface. The results indicate that increase of cavitation loading intensity results in decrease of relative cavitation resistance.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 165)

Pages:

189-194

Citation:

Online since:

June 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.T. Kwok, H.C. Man, F.T. Cheng: Scripta Mater. Vol. 39 (1998), pp.1229-1236.

Google Scholar

[2] S.K. Wu, H.C. Lin, C.H. Yeh: Wear Vol. 244 (2000), pp.85-93.

Google Scholar

[3] R.E. Apfel: Journal of the Acoustical Society of America Vol. 101(3) (1997), pp.1227-1237.

Google Scholar

[4] J.M. Pestman, J.B.F.N. Engberts, F. Dejong: Journal of the Royal Netherlands Chemical Society Vol. 113(12) (1994), pp.533-542.

Google Scholar

[5] W. Lauterborn, C.D. Ohl: Applied Scientific Research Vol. 58(1-4) (1998), pp.63-76.

Google Scholar

[6] V. Abramov, O. Abramov, V. Bulgakov, F. Sommer: Mat. Letters Vol. 37 (1998), pp.27-34.

Google Scholar

[7] K.A.J. Borthwick, W.T. Coakley, M.B. McDonnell, H. Nowotny, E. Benes, M. Gröschl: Journal of Microbiological Methods Vol. 60 (2) (2005), pp.207-216.

DOI: 10.1016/j.mimet.2004.09.012

Google Scholar

[8] M. Romdhane, C. Gourdon, G. Casamatta: Ultrasonics Vol. 34 (1996), pp.835-845.

DOI: 10.1016/s0041-624x(96)00057-1

Google Scholar

[9] B. Pugin: Ultrasonics Vol. 25 (1987), pp.49-55.

Google Scholar

[10] I.P. Marangopoulos, C.J. Martin, J.M.S. Hutchinson: Phys. Med. Biol. Vol. 40 (1995), p.18971908.

Google Scholar

[11] B. Zeqiri, M. Hodnett, A.J. Carroll: Ultrasonics Vol. 44(1) (2006), pp.73-82.

Google Scholar

[12] E. Maisonhaute, F. Javier Del Campo, R.G. Compton.: Ultrasonics Sonochemistry Vol. 9(5) (2002), pp.275-283.

Google Scholar

[13] M.A. Margulis: Sonochemical Reactions and Sonoluminescence. In: M. Chimia (Ed. ), 1986, p.286 (in Russian).

Google Scholar

[14] M.A. Margulis: Sonochemistry and Cavitation. (Gordon & Breach, London 1996).

Google Scholar

[15] I.R. Jones, D.H. Edwards: J. Fluid Mech. Vol. 7 (1960), p.569.

Google Scholar

[16] J. Kirejczyk: The energy flux of cavitating flow. Proc. 6th Int. Conf. On fluid Machinery. Budapest, 1979, p.555.

Google Scholar

[17] X. Chen, R.Q. Xu, Z.H. Shen, J. Lu, X.W. Ni: Optics and Laser Techn. Vol. 36(3) (2004), p.197203.

Google Scholar

[18] M. Dular, B. Bachert, B. Stoffel, B. Širok: Wear Vol. 257(11) (2004), pp.1176-1184.

DOI: 10.1016/j.wear.2004.08.004

Google Scholar

[19] K. Steller, T. Krzysztofowicz, Z. Reyman: ASTM Special Tech. Pub. Vol. 567 (1975), p.152.

Google Scholar

[20] B. Belahadji, J.P. Franc, J.M. Michel: Trans. ASME J. Fluid Eng. Vol. 113 (1991), p.700.

Google Scholar

[21] G. B Jiang, Y.K. Zheng, Y.Y. Yang, H.S. Fang: Wear Vol. 215 (1998), pp.46-53.

Google Scholar