Structural and Magnetic Properties of Nanoparticles of NiCuZn Ferrite Prepared by the Self-Combustion Method

Article Preview

Abstract:

NiCuZn ferrites were prepared by the sol-gel self-combustion method. Nanosized, homogeneous and highly reactive powders were obtained at relatively low temperatures. In present work the variations of structural, magnetic, and microwave properties of NiCuZn ferrite nanoparticles were studied as a function of the annealing temperature. The analysis of XRD patterns showed that only the spinel phase is present. Cell parameters slightly vary with thermal treatment while a crystalline size increases. Magnetic nanoparticles were mixed with an epoxy resin for reflectivity studies with a microwave vector network analyzer using the microwave-guide method in the range of 7.5 to 13.5GHz. Static saturation magnetization value (measured by SQUID) and microwave absorption show clear dependence on the annealing temperature/particle size and the absorption maximum moves towards the higher frequencies with an increase in the average size of the particles.

You might also be interested in these eBooks

Info:

[1] N. Popandian, A. Narayanasamy, C.N. et al.: Appl. Phys. Lett. 86 (19) (2005), p.192510.

Google Scholar

[2] Zhao, Dong-Lin, Lv Qiang, Shen Zeng-Min: J. Alloys and Comp. Vol. 480 (2009), p.634.

Google Scholar

[3] T. Nakamura: J. Mag. Mag. Mater. Vol. 168 (1997), p.285.

Google Scholar

[4] J.J. Shroti, S.D. Kulkarni, et al: Mater. Chem. and Phys. Vol. 59 (1999), p.1.

Google Scholar

[5] N. Rezlescue, E. Rezlescue, C. Pasnicu, et al: J. Phys.: Condens. Matter Vol. 6 (1994), p.5707.

Google Scholar

[6] A.C. Razzitte, W.G. Fano, S.E. Jacobo: Physica B Vol. 354 (2004), p.228.

Google Scholar

[7] S.E. Jacobo, W.G. Fano, A.C. Razzitte: Physica B Vol 320/1-4 (2002), p.257.

Google Scholar

[8] J. Hu, M. Yan, W. Luo, J.M. Wu: Physica B Vol. 400 (2007), p.119.

Google Scholar

[9] J. Hu, M. Yan, W.Y. Zhang: Mater. Chem. Phys. Vol. 98 (2006), p.459.

Google Scholar

[10] H. Su, H. Zhang, X. Tang, Y. Jing: J. Mag. Mag. Mater. Vol. 302 (2006), p.278.

Google Scholar

[11] E. E. Sileo, R. Rotelo, S.E. Jacobo: Physica B, Vol. 320/1-4 (2002), p.261.

Google Scholar

[12] S. Zahi, M. Hashim, A.R. Daud: Mater. Lett. Vol. 60 (2006), p.2803.

Google Scholar

[13] Debye P, Scherrer P: Interference on Inordinate Orientated Particles in X-ray Light. III. Physikalische Zeitschrift Vol. 18 (1917), p.291.

Google Scholar

[14] H.M. Rietveld.: J. Appl. Crystallogr. Vol. 2 (1969), p.65.

Google Scholar

[15] J. Rodriguez-Carvajal: Physica B, Vol. 192 (1993), p.55.

Google Scholar

[16] L. Yu, Sh. Cao, Y. Liu, et al: J. Magn. Magn. Mater. Vol. 301 (2006), p.100.

Google Scholar

[17] Hao-Ying Lu, Sheng-Yuan Chu, et al.: Journal of Crystal Growth Vol. 269 (2004), p.385.

Google Scholar

[18] W.C. Hsu, S.C. Chen, et al: Mater. Sci. Eng. B Vol. 111 (2004), p.142.

Google Scholar

[19] J.C. Aphesteguy, S.E. Jacobo, N.N. Schegoleva, and G.V. Kurlyandskaya: J. Alloys and Comp. Vol. 495 (2010), p.509.

Google Scholar

[20] G.V. Kurlyandskaya, J. Cunanan, S.M. Bhagat, J.C. Aphesteguy, S.E. Jacobo: J. Phys. Chem. Solids Vol. 68 (2007), p.1527.

Google Scholar

[21] G.V. Kurlyandskaya, S.M. Bhagat, et al.: J. Appl. Phys. Vol. 99 (2006) p.104308.

Google Scholar

[22] Igor Pro (WaveMetrics, Lake Oswego, OR, USA).

Google Scholar

[23] S. Li, B. Cui, F. Zhang, Y. Du, X. Jiang: J. Appl. Phys. Vol. 95 (11) (2004), p.7420.

Google Scholar

[24] S.E. Jacobo, J.C. Aphesteguy, R. Lopez Anton, N.N. Schegoleva, G.V. Kurlyandskaya: European Polymer Journal Vol. 43 (2007), p.1333.

DOI: 10.1016/j.eurpolymj.2007.01.024

Google Scholar

[25] L. Rade and B. Westergren in: Mathematics Handbook for Science and Engineering, edited by Studentliteratur, (1995).

Google Scholar

[26] T. Giannakopolou, L. Kompotiaiis, et al.: J. Mag. Mag. Mater. Vol. 246 (2002), p.360.

Google Scholar

[27] R.H. Kodama, A.E. Berkowitz: Phys. Rev. B Vol. 59 (1999), p.632.

Google Scholar