Mössbauer Spectroscopic Analysis of Nd2Fe14B/α-Fe Hard Magnetic Nanocomposites

Article Preview

Abstract:

Among novel magnetic intermetallics based on rare earth-transition compounds, the Nd2Fe14B/α-Fe isotropic nanocomposites have been obtained by recrystallization from an amorphous phase, prepared by melt spinning. For variable 5 wt.% Fe and 10 wt.% Fe contents we recorded transmission 57Fe Mössbauer spectra at the room temperature, hardened of the α-Fe phase by exchange interactions. The spectra have been analyzed in terms of ten Zeeman sextets and one paramagnetic doublet related to the Nd1.1Fe4B4 phase. One sextet corresponds to the α-Fe phase, whereas others are attributed to six non-equivalent Fe sites in the Nd2Fe14B structure, namely 16k1, 16k2, 8j1, 8j2, 4c, and 4e. The three remaining sextets belong to the Fe3B structure with three inequivalent Fe sites FeI(8g), FeII(8g) and FeIII(8g). All relevant parameters for both nanocomposites: the magnetic hyperfine field, the isomer shift and the quadrupole splitting are determined for each of these sites.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 170)

Pages:

154-159

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Fruchart, P. L'Heritier, P. Dalmas de Reotier, D. Fruchart, P. Wolfers, J.M.D. Coey, L.P. Fereira, R. Guillen, P. Vulliet and A. Yaouanc: J. Phys. F Vol. 17 (1987), p.483.

DOI: 10.1088/0305-4608/17/2/017

Google Scholar

[2] J. Bauer, M. Seeger, A. Zern and H. Kronmüller: J. Appl. Phys. Vol. 80 (1996), p.1667.

Google Scholar

[3] E.F. Kneller and R. Hawig: IEEE Trans. Magn. Vol. 27 (1991), p.3588.

Google Scholar

[4] A. Jianu, M. Valeanu, D. Lazar, F. Lifei, M. Tomut, V. Pop and S. Alexandru: Rom. Rep. Phys. Vol. 56, 3 (2004), p.385.

Google Scholar

[5] H.A. Davies: J. Magn. Magn. Mater. Vol. 157-158 (1996), p.11.

Google Scholar

[6] A. Manaf, R.A. Buckley and H.A. Davies: J. Magn. Magn. Mater. Vol. 128 (1993), p.302.

Google Scholar

[7] J.F. Herbst and J.J. Croat: J. Magn. Magn. Mater. Vol. 101 (1991), p.360.

Google Scholar

[8] W. Kappel and M.M. Codescu: Rom. J. Phys. Vol. 49, 9-10 (2004), p.733.

Google Scholar

[9] R.A. Brand: Nucl. Instrum. Meth. B Vol. 28 (1987), p.398.

Google Scholar

[10] R. Coehoorn, D.B. de Mooij and C. De Waard: J. Magn. Magn. Mater. Vol. 80 (1989), p.101.

Google Scholar

[11] X.J. Yin, I.P. Jones and I.R. Harris: J. Magn. Magn. Mater. Vol. 125 (1993), p.91.

Google Scholar

[12] S.C. Wang and Y. Li: J. Mater. Sci. Vol. 40 (2005), p.3853.

Google Scholar

[13] R. Kamal and Y. Andersson: Phys. Rev. B Vol. 32 (1985), p.1756.

Google Scholar

[14] C.J. Yang and E.B. Park: J. Magn. Magn. Mater. Vol. 166 (1997), p.243.

Google Scholar