Simulations of Decomposition Kinetics of Fe-Cr Solid Solutions during Thermal Aging

Article Preview

Abstract:

The decomposition of Fe-Cr solid solutions during thermal aging is modeled by Atomistic Kinetic Monte Carlo (AKMC) simulations, using a rigid lattice approximation with composition dependant pair interactions that can reproduce the change of sign of the mixing energy with the alloy composition. The interactions are fitted on ab initio mixing energies and on the experimental phase diagram, as well as on the migration barriers in iron and chromium rich phases. Simulated kinetics is compared with 3D atom probe and neutron scattering experiments.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

1016-1021

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.L. Klueh and A.T. Nelson, J. Nucl. Mater. 371, 37-52 (2007).

Google Scholar

[2] Steven J. Zinkle and Jeremy T. Busby, Materials Today 12, 12-19 (2009).

Google Scholar

[3] I. Mirebeau, M. Hennion, and G. Parette, Phys Rev Lett 53, 687-690 (1984).

Google Scholar

[4] T. P. C. Klaver, R. Drautz, and M. W. Finnis, Phys. Rev. B 74, 094435-11 (2006).

Google Scholar

[5] P. Olsson, I. A. Abrikosov, and J. Wallenius, Phys. Rev. B 73, 104416 (2006).

Google Scholar

[6] M. Yu. Lavrentiev, R. Drautz, D. Nguyen-Manh, T. P. C. Klaver, and S. L. Dudarev, Phys. Rev. B 75, 014208 (2007).

Google Scholar

[7] M.Yu. Lavrentiev, S.L. Dudarev, and D. Nguyen-Manh, J. Nucl. Mater. 386-388, 22-25 (2009).

Google Scholar

[8] G. Bonny, D. Terentyev, L. Malerba, and D. Van Neck, Phys. Rev. B 79, 104207 (2009).

Google Scholar

[9] C. Pareige, C. Domain, and P. Olsson, J. Appl. Phys. 106, 104906 (2009).

Google Scholar

[10] G. Bonny, R.C. Pasianot, L. Malerba, A. Caro, P. Olsson, and M.Yu. Lavrentiev, J. Nucl. Mater. 385, 268-277 (2009).

Google Scholar

[11] L. Malerba, A. Caro, and J. Wallenius, J. Nucl. Mater. 382, 112-125 (2008).

Google Scholar

[12] W. Xiong, M. Selleby, Q. Chen, J. Odqvist, and Y. Du, Crit. Rev. Solid State Mater. Sci. 35, 125 (2010).

Google Scholar

[13] F. Soisson and Chu-Chun Fu, Phys. Rev. B 76, 214102-12 (2007).

Google Scholar

[14] A. D. Le Claire, in Physical Chemistry: An Advanced Treatise, edited by H. Eyring (Academic Press, New York, 1970).

Google Scholar

[15] H. Mehrer, N. Stolica, and N. A. Stolwijk, in Diffusion in Solid Metals and Alloys, edited by H. Mehrer (Springer-Verlag, Berlin/Heidelberg, 1990).

DOI: 10.1007/10390457_20

Google Scholar

[16] H. Schultz, in Atomic Defects in Metals, edited by H. Ullmaier (Springer-Verlag, Berlin/Heidelberg, 1991).

Google Scholar

[17] S. Novy, P. Pareige, and C. Pareige, J. Nucl. Mater. 384, 96-102 (2009).

Google Scholar

[18] F Vurpillot, A Bostel, and D Blavette, Applied Physics Letters 76, 3127-3129 (2000).

DOI: 10.1063/1.126545

Google Scholar

[19] F. Bley, Acta Metall. Mater. 40, 1505-1517 (1992).

Google Scholar

[20] M. Furusaka, Y. Ishikawa, S. Yamaguchi, and Y. Fujino, J. Phys. Soc. Jpn. 55, 2253-2269 (1986).

Google Scholar