Surface Segregation Maps Derived from Tight-Binding Ising Model

Article Preview

Abstract:

Surface segregation in transition metals can be analysed within a generalised Ising model,derived from Tight-Binding electronic structure calculations, which identifies three driving forces:the difference in surface energy and atomic volume between the two components and their tendencyto order or phase separate in the bulk. Using this ”three effects” rule, we present here general mapswhich predict the tendency of the solute metal element to segregate (or not) at the surface of a metalmatrix, for the 702 solute/matrix systems that can be formed with transition metal elements. Ourpredictions compare fairly well to the existing ab initio calculations and experimental data availableon these systems. The few exceptions, which mainly concern given matrix elements are discussed indetails.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

1008-1015

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. V. Ruban, H. L. Skriver, J. K. Nørskov, Phys. Rev. B 59 (24) (1999) 15990-16000.

DOI: 10.1103/physrevb.59.15990

Google Scholar

[2] A. U. Nilekar, A. V. Ruban, M. Mavrikakis, Surface Science 603 (1) (2009) 91 - 96.

Google Scholar

[3] J. R. Chelikowsky, Surface Science 139 (2-3) (1984) L197 - L203.

Google Scholar

[4] S. Mukherjee, J. Mor´an-L´opez, Surface Science 188 (3) (1987) L742 - L748.

Google Scholar

[5] P. M. Ossi, Surface Science 201 (3) (1988) L519 - L531.

Google Scholar

[6] F. Ducastelle, B. Legrand, G. Tr´eglia, Prog. Theor. Phys. Supp. 101 (1990) 159.

Google Scholar

[7] G. Tr´eglia, B. Legrand, F. Ducastelle, Europhys. Lett. 7 (1988) 575.

Google Scholar

[8] The detailed numerical values can be found in the following www document . URL http: /www. im2np. fr/perso/roussel. html.

Google Scholar

[9] K. A. Gschneidner, Solid State Phys. 16 (1964) 275.

Google Scholar

[10] F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, A. K. Niessen, Cohesion in Metals: Transition Metal Alloys, North-Holland, Amsterdam, (1988).

Google Scholar

[11] J. Friedel, Ann. Phys. (N. Y. ) 1 (1976) 257.

Google Scholar

[12] F. Cyrot-Lackmann, Adv. Phys. 16 (1967) 393.

Google Scholar

[13] J. Friedel, Journal of Magnetism and Magnetic Materials 15-18 (Part 1) (1980) xxxviii - xlviii.

Google Scholar

[14] J. Creuze, I. Braems, F. Berthier, C. Mottet, G. Tr´eglia, B. Legrand, Phys. Rev. B 78 (7) (2008) 075413.

Google Scholar