Effect of Doping on the Thermoelectric Properties of Thallium Tellurides Using First Principles Calculations

Article Preview

Abstract:

We present a study of the electronic properties of Tl5Te3, BiTl9Te6 and SbTl9Te6 compounds by means of density functional theory based calculations. The optimized lattice constants of the compounds are in good agreement with the experimental data. The band gap of BiTl9Te6 and SbTl9Te6 compounds are found to be equal to 0.589 eV and 0.538 eV, respectively and are in agreement with the available experimental data. To compare the thermoelectric properties of the different compounds we calculate their thermopower using Mott’s law and show, as expected experimentally, that the substituted tellurides have much better thermoelectric properties compared to the pure compound.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

985-989

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Snyder G.J. and Toberer E.S. Nature mater. 7, 105 (2008)

Google Scholar

[2] A. Juodakis and C. R. Kannewurf, J. Appl. Phys. 39, 3003 (1968)

Google Scholar

[3] E. Cruceanu, St. Sladaru, J. Mater. Sci. 4, 410 (1969)

Google Scholar

[4] T. Ikari, K. Hashimoto, Phys. Stat. Sol. (b) 86, 239 (1978)

Google Scholar

[5] J.D. Jensen, J.R. Burke, D.W. Ernst and R.S. Allgaier, Phys. Rev. B. 6, 319 (1972)

Google Scholar

[6] K.J. Nordell, G.J. Miller, J. Alloys Compds. 241, 51 (1996)

Google Scholar

[7] P.E. Lippens, L. Aldon, Solid State Commun. 108, 913 (1998)

Google Scholar

[8] M.C. Record, Y. Feutelais and H.L. Lukas, Z. Metallkd. 88, 45 (1997)

Google Scholar

[9] P. Villars, L.D. Calvert, "Pearson's Handbook of Crystallographic Data for Intermetallic Phases", Vol. 1-4, ASM International, Materials Park (OH-USA), (1991)

Google Scholar

[10] B. Wölfing, C. Kloc, J. Teubner and E. Bucher, Phys. Rev. Lett. 86, 4350 (2001)

Google Scholar

[11] B. Wölfing, Ph.D. thesis, Universitat Konstanz (2000)

Google Scholar

[12] K. Kurosaki, A, Kosuga, S. Yamanaka, J. Alloys Compds. 351, 14 (2003)

Google Scholar

[13] P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

Google Scholar

[14] X. Tao, P. Jund and J.-C. Tédenac, Phy. Rev. B submitted.

Google Scholar

[15] N.F. Mott and H. Jones: The theory of the properties of metals and alloys (Dover, New York, 1958), p.116.

Google Scholar

[16] P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

Google Scholar

[17] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999)

Google Scholar

[18] G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

Google Scholar

[19] G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996)

Google Scholar

[20] J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

Google Scholar

[21] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

DOI: 10.1103/physrevb.46.6671

Google Scholar

[22] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

Google Scholar

[23] M. Methfessel and A.T. Paxton, Phys. Rev. B 40, 3616 (1989)

Google Scholar

[24] T. Stopa, J. Tobola, S. Kaprzyk, E. K. Hlil, D. Fruchart, J. Phys. : Cond. Matter. 18, 6379 (2006)

Google Scholar

[25] G.A. Gamal, M.M Abdalrahman, M.I Ashraf and H.J. Eman: Phys. Stat. Sol (a) Vol. 192 (2002), p.322

Google Scholar

[26] M.H. Cohen and V. Heine: Advan. Phys. Vol 7 (1958), p.395

Google Scholar

[27] J.T. Teubner, Ph.D. thesis, Universitat Konstanz (2001)

Google Scholar