Thermodynamics of Stable and Metastable Cu-O-H Compounds

Article Preview

Abstract:

We apply density functional perturbation theory together with experimental studies in order to investigate the structure and physical properties of possible stable and metastable copper(I) compounds with oxygen and hydrogen. Copper(I) hydride, CuH, is found to be a metastable phase which decomposes at ambient conditions and exhibiting a semiconducting gap in the electronic spectrum. The calculated structure and phonon spectra are found to be in good agreement with experimental data. The phonon spectra of a novel metastable phase, copper(I) hydroxide, are also determined.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

973-978

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Predel, in: Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys Cr-Cs .. Cu-Zr, edited by O. Madelung, volume 5d of Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series, Group IV: Macroscopic Properties of Matter, Springer-Verlag Berlin Heidelberg (1994).

DOI: 10.1007/978-3-540-44756-6_169

Google Scholar

[2] A. Wurtz: Compt. Rend. Vol. 18 (1844), p.702.

Google Scholar

[3] J. A. Goedkoop and A.F. Andersen: Acta Cryst. Vol. 8 (1955), p.118.

Google Scholar

[4] R. Burtovyy, E. Utzig, and M. Tkacz: Thermochimica Acta Vol. 363 (2000), p.157.

DOI: 10.1016/s0040-6031(00)00594-3

Google Scholar

[5] R. Burtovyy, D. Włosewicz, A. Czopnik, and M. Tkacz: Thermochimica Acta Vol. 400 (2003), p.121–129.

DOI: 10.1016/s0040-6031(02)00489-6

Google Scholar

[6] N. P. Fitzsimons, W. Jones, and P. J. Herley: Catalysis Letters Vol. 15 (1992), pp.83-94.

Google Scholar

[7] H. J. Smithson, D. Morgan, A. Van der Ven, C. Marianetti, A. Pedith and G. Ceder: Mat. Res. Soc. Symp. Proc. Vol. 730 (MRS, Warrendale, PA, USA, 2002), p. V2. 2. 1.

DOI: 10.1557/proc-730-v2.2

Google Scholar

[8] H. J. Smithson, C. Marianetti, D. Morgan, A. Van der Ven, A. Pedith and G. Ceder: Rhys. Rev. B Vol. 66 (2002), art. no. 144107.

Google Scholar

[9] I. Puigdomenech and C. Taxén: Thermodynamic data for copper: Implications for the corrosion of copper under repository conditions, Technical Report TR-00-13, Swedish. Nucl. Fuel Waste Manag. Co., Stockholm (2000).

Google Scholar

[10] F. Fischer: Z. Elektrochem. (Germany) Vol. 9 (1903), p.507.

Google Scholar

[11] D. Miller: J. Phys. Chem. Vol. 13 (1909), p.256.

Google Scholar

[12] H. W. Gillett: J. Phys. Chem. Vol. 13 (1909), p.332.

Google Scholar

[13] K. J. Cheng: Anal. Chem. Vol. 27(7) (1955), p.1165.

Google Scholar

[14] E. Protopopoff and P. Markus: Electrochim. Acta Vol. 51 (2005), p.408.

Google Scholar

[15] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Gianozzi: Rev. Mod. Phys. Vol. 73 (2001), p.515.

Google Scholar

[16] D. Vanderbilt: Phys. Rev. B Vol. 41 (1990), p.7892.

Google Scholar

[17] J. P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1996), p.3865.

Google Scholar

[18] Giannozzi P, Baroni S, Bonini N, et al.: J. Phys.: Cond. Matter Vol. 21 (2009), art. no. 395502; information on http: /www. quantum-espresso. org.

Google Scholar

[19] P.A. Korzhavyi and B. Johansson: Thermodynamic properties of copper compounds with oxygen and hydrogen from first principles, Technical Report TR-10-30, Swedish. Nucl. Fuel Waste Manag. Co., Stockholm, (2010).

Google Scholar

[20] W. Schäfer and A. Kirfel: Appl. Phys. A Vol. 74 (2002), p. S1010.

Google Scholar

[21] R. Mittal, S. L. Chaplot, S. K. Mishra, and P. P. Bose: Phys. Rev. B Vol. 75 (2007), art. no. 174303.

Google Scholar

[22] M. M. Beg and S. M. Shapiro: Phys. Rev. B Vol. 13 (1976), p.1728.

Google Scholar

[23] P. Y. Yu and Y. R. Shen: Phys. Rev. B Vol. 12 (1975), p.1377.

Google Scholar

[24] L. O. Werme and P. A. Korzhavyi: Catalysis Letters Vol. 135 (2010), p.165.

Google Scholar